設
F1、
F2分別是橢圓
的左、右焦點,
P為橢圓上任一點,點M的坐標為(6,4),則
的最大值為__________.
試題分析:
,此時點P為直線
與橢圓
的交點,故填15
點評:利用橢圓定義轉(zhuǎn)化為求解距離差的最值問題,然后借助對稱性轉(zhuǎn)化,根據(jù)兩點之間線段最短進行求解,其過程簡便.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,短軸的一個端點到右焦點的距離為
,直線
交橢圓于不同的兩點
。
(1)求橢圓的方程;
(2)若坐標原點
到直線
的距離為
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分) 設橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,
)在橢圓上,。
(1)求橢圓E的方程;
(2)設動直線L交橢圓E于A、B兩點,且
,求△OAB的面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)(理科)已知橢圓
,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點
的直線
交橢圓于
兩點,交直線
于點
,且
,
,
求證:
為定值,并計算出該定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
的離心率為
,頂點與橢圓
的焦點相同,那么雙曲線的焦點坐標為_____;漸近線方程為_________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(1)求橢圓
的方程;
(2)若
(
為坐標原點),求
的值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F
1,F(xiàn)
2,線段OF
1,OF
2的中點分別為B
1,B
2,且△AB
1B
2是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過B
1作直線l交橢圓于P,Q兩點,使PB
2⊥QB
2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的兩個焦點為
,點
在橢圓
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知點
,設點
是橢圓
上任一點,求
的取值范圍.
查看答案和解析>>