【題目】以下關(guān)于命題的說(shuō)法正確的有(選擇所有正確命題的序號(hào)).

(1)“若,則函數(shù)在其定義域內(nèi)是減函數(shù)”是真命題;

(2)命題“若,則”的否命題是“若,則”;

(3)命題“若都是偶函數(shù),則也是偶數(shù)”的逆命題為真命題;

(4)命題“若,則”與命題“若,則”等價(jià).

A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)

【答案】C

【解析】對(duì)于,當(dāng)時(shí),a1

函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是增函數(shù),錯(cuò)誤;

對(duì)于,命題“若a=0,則ab=0”的否命題是“若a0,則ab≠0”,∴②正確;

對(duì)于,命題“若x,y都是偶數(shù),則x+y也是偶數(shù)”的逆命題為

“若x+y是偶數(shù),則x、y都是偶數(shù)”,它是假命題,如1+1=2,但1是奇數(shù),

∴③錯(cuò)誤;

對(duì)于,命題“若aM,則bM”的逆否命題是“若bM,則aM”, 則兩個(gè)命題是等價(jià)命題,∴④正確.

綜上,正確的命題是(2)(4).

故答案為:C .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足

(1)求證:數(shù)列是等比數(shù)列;

(2)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是遞增的等差數(shù)列,它的前三項(xiàng)的和為﹣3,前三項(xiàng)的積為8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)是,并且經(jīng)過(guò)點(diǎn),拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓的右頂點(diǎn).

求橢圓和拋物線的標(biāo)準(zhǔn)方程;

已知點(diǎn)為拋物線內(nèi)一個(gè)定點(diǎn),過(guò)作斜率分別為的兩條直線交拋物線于點(diǎn),且分別是的中點(diǎn),若,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為, , ,坐標(biāo)原點(diǎn)為,且線段, , 的長(zhǎng)度成等差數(shù)列.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若過(guò)點(diǎn)的一條直線交橢圓于點(diǎn), ,交軸于點(diǎn),使得線段被點(diǎn), 三等分,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體的棱長(zhǎng)為 的中點(diǎn), 為線段的動(dòng)點(diǎn),過(guò)的平面截該正方體所得的截面記為,則下列命題正確的序號(hào)是_________.

①當(dāng)時(shí), 的面積為;

②當(dāng)時(shí), 為六邊形;

③當(dāng)時(shí), 的交點(diǎn)滿足;

④當(dāng)時(shí), 為等腰梯形;

⑤當(dāng)時(shí), 為四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費(fèi)按行駛里程加用車時(shí)間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點(diǎn)10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時(shí)間是一個(gè)隨機(jī)變量,根據(jù)一段時(shí)間統(tǒng)計(jì)40次路上開車花費(fèi)時(shí)間在各時(shí)間段內(nèi)的情況如下:

時(shí)間(分鐘)

次數(shù)

8

14

8

8

2

以各時(shí)間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分鐘.

(Ⅰ)若李先生上.下班時(shí)租用一次共享汽車路上開車不超過(guò)45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個(gè)月(以20天計(jì)算)平均用車費(fèi)用大約是多少(同一時(shí)段,用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩直線l1:mx+8y+n=0和l2:2x+my﹣1=0,試確定m,n的值,使
(1)l1與l2相交于點(diǎn)P(m,﹣1);
(2)l1∥l2;
(3)l1⊥l2 , 且l1在y軸上的截距為﹣1.

查看答案和解析>>

同步練習(xí)冊(cè)答案