分析 利用雙曲線定義|PF1|+|PF2|=2a,設(shè)|PF2|=r,推出|PF2|=$\frac{2a}{3}$.通過|PF2|≥c-a,求出雙曲線的離心率e的取值范圍.
解答 解:根據(jù)雙曲線定義|PF1|+|PF2|=2a,設(shè)|PF2|=r,
則|PF2|=4r,故3r=2a,即r=$\frac{2a}{3}$,即|PF2|=$\frac{2a}{3}$.
根據(jù)雙曲線的幾何性質(zhì),|PF2|≥c-a,即$\frac{2a}{3}≥c-a$,
即$\frac{c}{a}≤\frac{5}{3}$,即e≤$\frac{5}{3}$.又e>1,
故雙曲線的離心率e的取值范圍是(1,$\frac{5}{3}$].
故答案為:(1,$\frac{5}{3}$].
點(diǎn)評(píng) 本題考查雙曲線定義以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$]k∈Z | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$]k∈Z | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$]k∈Z | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0]∪[$\frac{1}{2}$,+∞) | B. | [2,+∞) | C. | (-∞,0)∪(2,+∞) | D. | (-∞,0)∪[$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x2≠1,則x=1 | B. | 若x2=1,則x≠1 | C. | 若x2≠1,則x≠1 | D. | 若x≠1,則x2≠1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com