【題目】已知函數(shù)f(x)=ax3﹣6x2+1,若f(x)存在唯一的零點(diǎn)x0 , 且x0>0,則a的取值范圍是(
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4
D.(4 ,+∞)

【答案】C
【解析】解:當(dāng)a=0時(shí),f(x)=﹣12x2+1=0,解得x=± ,函數(shù)f(x)有兩個(gè)零點(diǎn),不符合題意,應(yīng)舍去; 當(dāng)a>0時(shí),令f′(x)=3ax2﹣12x=3ax(x﹣ )=0,解得x=0或x= >0,列表如下:

x

(﹣∞,0)

0

(0,

,+∞)

f′(x)

+

0

0

+

f(x)

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

∵x→﹣∞,f(x)→﹣∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,
不符合條件:f(x)存在唯一的零點(diǎn)x0 , 且x0>0,應(yīng)舍去.
當(dāng)a<0時(shí),f′(x)=3ax2﹣12x=3ax(x﹣ )=0,解得x=0或x= <0,列表如下:

x

(﹣∞,

,0)

0

(0,+∞)

f′(x)

0

+

0

f(x)

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

而f(0)=1>0,x→+∞時(shí),f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,
∵f(x)存在唯一的零點(diǎn)x0 , 且x0>0,∴極小值f( )=a( 3﹣6( 2+1>0,
化為a2>32,
∵a<0,∴a<﹣4
綜上可知:a的取值范圍是(﹣∞,﹣4 ).
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2012年在某大學(xué)自主招生考試的面試中,七位評(píng)委為某考生打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(

7

9

8

4

4

6

4

7

9

3


A.84,4.84
B.84,1.6
C.85,1.6
D.85,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)設(shè),對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長(zhǎng)為

(I)求橢圓的方程;

)過(guò)左焦點(diǎn)F的直線(xiàn)與橢圓分別交于A(yíng)、B兩點(diǎn),若三角形OAB的面積為求直線(xiàn)AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,矩形中, ,將沿折起,得到如圖所示的四棱錐,其中.

(1)證明:平面平面

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m∈R,復(fù)數(shù)z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i為虛數(shù)單位.
(1)當(dāng)m為何值時(shí),復(fù)數(shù)z是虛數(shù)?
(2)當(dāng)m為何值時(shí),復(fù)數(shù)z是純虛數(shù)?
(3)當(dāng)m為何值時(shí),復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與x軸平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對(duì)任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀(guān)測(cè)點(diǎn),且PG=50m.在觀(guān)測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高為10m(即ED=10m)的廣告牌遮住了視線(xiàn),因此在觀(guān)測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓弧.

(1)若圓形標(biāo)志物半徑為25m,以PG所在直線(xiàn)為x軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線(xiàn)PF的方程;
(2)若在點(diǎn)P處觀(guān)測(cè)該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知棱長(zhǎng)都相等的正三棱錐內(nèi)接于一個(gè)球,某學(xué)生畫(huà)出四個(gè)過(guò)球心的平面截球與正三棱錐所得的圖形,如圖所示,則( )

A.以上四個(gè)圖形都是正確的
B.只有(2)(4)是正確的
C.只有(4)是錯(cuò)誤的
D.只有(1)(2)是正確的

查看答案和解析>>

同步練習(xí)冊(cè)答案