已知函數(shù)y=f(x),x∈R是周期為4的偶函數(shù),且f(x)=x2+1,x∈(0,2),求f(5),f(7).
考點:函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應用
分析:首先根據(jù)f(x)是定義在R上的周期為4的偶函數(shù),判斷出f(5)=f(4×1+1)=f(1),f(7)=f(4×2-1)=f(-1)=f(1);然后根據(jù)f(x)=x2+1,x∈(0,2)求解即可.
解答: 解:因為f(x)是定義在R上的周期為4的偶函數(shù),
所以f(5)=f(4×1+1)=f(1),
f(7)=f(4×2-1)=f(-1)=f(1);
又因為f(x)=x2+1,x∈(0,2),
所以f(5)=f(1)=12+1=2,
f(7)=f(1)=12+1=2.
點評:此題主要考查了函數(shù)的周期性的運用,考查了偶函數(shù)的性質(zhì)的運用,屬于基礎題,解答此題的關(guān)鍵是根據(jù)函數(shù)的周期性,把所求的函數(shù)值轉(zhuǎn)化為已知定義域范圍內(nèi)函數(shù)的求值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

利用隨機模擬方法可估計某無理數(shù)m的值,讀如圖的程序,其中RND(N)表示產(chǎn)生(0,1)間的隨機小數(shù),運行此程序,輸出的結(jié)果P是m的估計值,則m為( 。
A、無理數(shù)eB、lg2
C、lg3D、π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求多面體PMABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(ax2+x-1)ex,其中e是自然對數(shù)的底數(shù),a∈R,
(Ⅰ)若a≤-
1
2
,討論f(x)的單調(diào)性;
(Ⅱ)若a=-1,對任意的x∈(-∞,0),都有f(x)>
1
3
x3+
1
2
x2+m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線C的方程為y=ax2(a<0),過拋物線C上一點P(x0,y0)(x0≠0)作斜率為k1、k2的兩條直線分別交拋物線C于A(x1,y1)、B(x2,y2)兩點(P、A、B三點互不相同),且滿足k2+λk1=0(λ≠0且λ≠-1).
(1)求拋物線C的焦點坐標和準線方程;
(2)當λ=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標y1的取值范圍;
(3)設直線AB上一點M,滿足
BM
MA
,證明線段PM的中點在y軸上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=(x-1)ex-kx2,(k∈R).
(1)若x=0是f(x)的極大值點,求實數(shù)k的取值范圍;
(2)當k∈(
1
2
,1]時,求函數(shù)f(x)在[0,k]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C過點A(1,
3
2
),兩焦點為F1(-
3
,0)、F2
3
,0),O是坐標原點,不經(jīng)過原點的直線l:y=kx+m與橢圓交于兩不同點P、Q.
(1)求橢圓C的方程;     
(2)當k=1時,求△OPQ面積的最大值;
(3)若直線OP、PQ、OQ的斜率依次成等比數(shù)列,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
4
+y2=1的短軸端點分別為A,B(如圖).直線AM,BM分別與橢圓E交于C,D兩點,其中點滿足m≠0,且m≠±
3

(Ⅰ)若AM⊥BM,求m的值;
(Ⅱ)證明:CD所在直線與y軸交點的位置與m無關(guān).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=(
1
2
)x2-3x-2
的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案