1.已知圓C方程為(x-1)2+y2=r2,若p:1≤r≤3;q:圓C上至多有3個(gè)點(diǎn)到直線x-$\sqrt{3}$y+3=0的距離為1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由直線x-$\sqrt{3}$y+3=0到圓C方程為(x-1)2+y2=r2的距離為1,至多有3個(gè)點(diǎn),可能有2個(gè),1個(gè)或沒有,求出滿足條件的r的范圍,r-1≤d,與P對(duì)比,就可得到答案.

解答 解:由題意,圓心為(1,0).
直線x-$\sqrt{3}$y+3=0到圓C的距離為1,至多有3個(gè)點(diǎn),可知:圓心到直線的距離d滿足:r-1≤d.
由d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$=$\frac{|1-0+3|}{2}=2$
則:r-1≤2.
解得:0<r≤3;
故得P推出q,即q⇒p.
故選:A.

點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的判斷,根據(jù)圓心到直線的距離建立關(guān)系求解.至多有3個(gè)點(diǎn),圓心到直線的距離d滿足:r-1≤d是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-alnx-a,其中常數(shù)a>0.
(1)當(dāng)a=e時(shí),求函數(shù)f(x)的最小值;
(2)若不等式f(x)≥0對(duì)任意x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)y=f(x)有兩個(gè)零點(diǎn)x1,x2(其中0<x1<x2),求證:$\frac{1}{a}$<x1<1<x2<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{1}{2}$ax2-x-lnx,a∈R
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值;
(2)若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將二進(jìn)制數(shù)1010 101(2)化為八進(jìn)制數(shù)為125(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某個(gè)體服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如表所示:
x3456789
y66697381899091
(1)畫出散點(diǎn)圖;
(2)求純利y與每天銷售件數(shù)x之間的回歸直線方程;
(3)若該周內(nèi)某天銷售服裝20件,估計(jì)可獲純利多少元(保留到整數(shù)位).
(附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計(jì)分別為:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$xi2=280,$\sum_{i=1}^{7}$yi2=45 309,$\sum_{i=1}^{7}$xiyi=3 487.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.log510-log52=( 。
A.8B.0C.1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x|x2<16},B={x|x<m},若A∩B=A,則實(shí)數(shù)m的取值范圍是( 。
A.[-4,+∞)B.[4,+∞)C.(-∞,-4]D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知角θ的終邊過點(diǎn)(2,3),則tan(θ-$\frac{π}{4}$)等于( 。
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1,
(1)求f(x)的解析式;
(2)方程f(x)=$\frac{1}{2}$x+1+k 在(-1,1)上有實(shí)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案