【題目】E是正方形ABCD的邊CD的中點,將△ADEAE旋轉,則直線AD與直線BE所成角的余弦值的取值范圍是_____

【答案】

【解析】

由題意畫出圖形,求出△ADE沒有旋轉及將△ADEAE旋轉,使面AED與平面ABCD重合時ADBE的平行線AF所成角,則答案可求.

如圖,在平面ABCD內(nèi),過AAF∥BECD的延長線于F,設正方形ABCD的邊長為2,

當△ADE沒有旋轉時,在Rt△ADF中,可得DF=1,AF=,

∴cos∠FAD=

當將△ADEAE旋轉,使面AED與平面ABCD重合時,此時求得DD′= ,

在△DAD′中,由AD=AD′=2,DD′=,

由余弦定理可得:cos∠DAD′=

∴直線AD與直線BE所成角的余弦值的取值范圍是[,).

故答案為:[,).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的定義域為,,使得不等式成立,關于的不等式的解集記為.

(1)若為真,求實數(shù)的取值集合

(2)在(1)的條件下,若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校或班級舉行活動,通常需要張貼海報進行宣傳,現(xiàn)讓你設計一張豎向張貼的海報, 要求版心面積為128 dm2 , 上、下兩邊各空2 dm,左右兩邊各空1 dm,張貼的長與寬尺
寸為( )才能使四周空白面積最。
A.20dm,10dm
B.12dm,9dm
C.10dm,8dm
D.8dm,5dm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:m),(1)將y表示為x的函數(shù)(2)試確定x , 使修建此矩形場地圍墻的總費用最小,并求出最小總費用
(1)將y表示為x的函數(shù):
(2)試確定x , 使修建此矩形場地圍墻的總費用最小,并求出最小總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合P={x|x2﹣2 x≤0},m=20.3 , 則下列關系中正確的(
A.mP
B.mP
C.{m}∈P
D.{m}P

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合M={x|x2+3x+2<0},集合 ,則M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列滿足:,則稱數(shù)列為“正弦數(shù)列”,現(xiàn)將這五個數(shù)排成一個“正弦數(shù)列”,所有排列種數(shù)記為,則二項式的展開式中含項的系數(shù)為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正三角形的邊長為,將它沿高翻折,使點與點間的距離為,此時四面體外接球表面積為

A. B. C. D.

查看答案和解析>>

同步練習冊答案