(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),設(shè)的最小值為恒成立,求實(shí)數(shù)t的取值范圍.
(Ⅰ)當(dāng)時(shí),,
所以函數(shù)的減區(qū)間為,無(wú)增區(qū)間;
當(dāng)時(shí),
,由,由,
所以函數(shù)的減區(qū)間為,增區(qū)間為
,此時(shí),所以,
所以函數(shù)的減區(qū)間為,無(wú)增區(qū)間;
綜上,當(dāng)時(shí),函數(shù)的減區(qū)間為,無(wú)增區(qū)間,
當(dāng)時(shí),函數(shù)的減區(qū)間為,增區(qū)間為
(Ⅱ)為所求.
(I)由,然后討論a=0,a>0.-1<a<0.a<-1.a=-1等幾種情況.
(II)由(Ⅰ)得,, 然后解本題的關(guān)鍵是根據(jù),可得,然后
,轉(zhuǎn)化為不等式恒成立問(wèn)題解決.根據(jù)導(dǎo)數(shù)進(jìn)一步確定h(x)的最大值即可.
(Ⅰ)解:,               ┄┄┄┄┄┄2分
當(dāng)時(shí),,
所以函數(shù)的減區(qū)間為,無(wú)增區(qū)間;
當(dāng)時(shí),,
,由,由,
所以函數(shù)的減區(qū)間為,增區(qū)間為;
,此時(shí),所以,
所以函數(shù)的減區(qū)間為,無(wú)增區(qū)間;
綜上,當(dāng)時(shí),函數(shù)的減區(qū)間為,無(wú)增區(qū)間,
當(dāng)時(shí),函數(shù)的減區(qū)間為,增區(qū)間為.             …………6分
(Ⅱ)解:由(Ⅰ)得,, 
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823225527288398.png" style="vertical-align:middle;" />,所以,………8分
,則恒成立,
由于
當(dāng)時(shí),,故函數(shù)上是減函數(shù),
所以成立;                                           ………10分
當(dāng)時(shí),若,
故函數(shù)上是增函數(shù),
即對(duì),與題意不符;
綜上,為所求.                                                ………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知函數(shù)
(Ⅰ)求的最小值;
(Ⅱ)若上為單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),(e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在上無(wú)零點(diǎn),求a的最小值;
(III)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)a為實(shí)數(shù), 函數(shù)f(x)=x3-x2-x+a.
(1)求f(x)的極值;
(2)若曲線y=f(x)與x軸僅有一個(gè)交點(diǎn), 求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

、已知對(duì)任意實(shí)數(shù),有,且時(shí),,則時(shí)(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是定義在上的非負(fù)的可導(dǎo)函數(shù),且滿足,若
,則
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于三次函數(shù),定義的導(dǎo)函數(shù)的導(dǎo)函數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,可以證明,任何三次函數(shù)都有“拐點(diǎn)”,任何三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心,請(qǐng)你根據(jù)這一結(jié)論判斷下列命題:
①任意三次函數(shù)都關(guān)于點(diǎn)對(duì)稱:
②存在三次函數(shù)有實(shí)數(shù)解,點(diǎn)為函數(shù)的對(duì)稱中心;
③存在三次函數(shù)有兩個(gè)及兩個(gè)以上的對(duì)稱中心;
④若函數(shù),則,
其中正確命題的序號(hào)為_(kāi)_          _____(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分) 已知R,函數(shù)(x∈R).
(1)當(dāng)時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)是否能在R上單調(diào)遞減,若能,求出的取值范圍;若不能,請(qǐng)說(shuō)明理由;
(3)若函數(shù)f(x)在上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè).
(Ⅰ)判斷函數(shù)的單調(diào)性并證明;
(Ⅱ)求在區(qū)間上的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案