函數(shù)f(x)=數(shù)學(xué)公式則f(數(shù)學(xué)公式)的值是________.


分析:當(dāng)x>1時(shí),f(x)=x2-x-3; 當(dāng)x≤1時(shí),f(x)=1-x2,故此本題先求,再將所求得的值代入x>1時(shí)解析式求值即可.
解答:當(dāng)x>1時(shí),f(x)=x2-x-3,則 f(3)=32-3-3=3,

當(dāng)x≤1時(shí),f(x)=1-x2,
∴f()=f()=1-=
故答案為:
點(diǎn)評(píng):本題考查分段復(fù)合函數(shù)求值,根據(jù)定義域選擇合適的解析式,由內(nèi)而外逐層求解.屬于考查分段函數(shù)的定義的題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),f″(x)是函數(shù)f(x)的導(dǎo)數(shù),此時(shí),稱f″(x)為原函數(shù)f(x)的二階導(dǎo)數(shù).若二階導(dǎo)數(shù)所對(duì)應(yīng)的方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.
設(shè)三次函數(shù)f(x)=2x3-3x2-24x+12請(qǐng)你根據(jù)上面探究結(jié)果,解答以下問題:
①函數(shù)f(x)=2x3-3x2-24x+12的對(duì)稱中心坐標(biāo)為
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)
;
②計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且當(dāng)x∈(0,
3
2
)
時(shí),f(x)=2-x+1,則f(8)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),f″(x)是函數(shù)f(x)的導(dǎo)數(shù),此時(shí),稱f″(x)為原函數(shù)f(x)的二階導(dǎo)數(shù).若二階導(dǎo)數(shù)所對(duì)應(yīng)的方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.
設(shè)三次函數(shù)f(x)=2x3-3x2-24x+12請(qǐng)你根據(jù)上面探究結(jié)果,解答以下問題:
①函數(shù)f(x)=2x3-3x2-24x+12的對(duì)稱中心坐標(biāo)為______;
②計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案