4.已知F是雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),過點(diǎn)F作E的一條漸近線的垂線,垂足為P,線段PF與E相交于點(diǎn)Q,記點(diǎn)Q到E的兩條漸近線的距離之積為d2,若|FP|=2d,則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.2C.3D.4

分析 E上任意一點(diǎn)Q(x,y)到兩條漸近線的距離之積為d1d2=$\frac{^{2}{x}^{2}-{a}^{2}{y}^{2}}{^{2}+{a}^{2}}$=$\frac{{a}^{2}^{2}}{{c}^{2}}$=d2,F(xiàn)(c,0)到漸近線bx-ay=0的距離為$\frac{bc}{\sqrt{^{2}+{a}^{2}}}$=b=2d,求出可求雙曲線的離心率.

解答 解:E上任意一點(diǎn)Q(x,y)到兩條漸近線的距離之積為d1d2=$\frac{^{2}{x}^{2}-{a}^{2}{y}^{2}}{^{2}+{a}^{2}}$=$\frac{{a}^{2}^{2}}{{c}^{2}}$=d2,
F(c,0)到漸近線bx-ay=0的距離為$\frac{bc}{\sqrt{^{2}+{a}^{2}}}$=b=2d,
∴$\frac{ab}{c}=\frac{2}$,
∴e=$\frac{c}{a}$=2,
故選B.

點(diǎn)評(píng) 本題考查雙曲線的離心率,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在(4-x-1)(2x-3)5的展開式中,常數(shù)項(xiàng)為-27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某商場對(duì)一個(gè)月內(nèi)每天的顧客人數(shù)進(jìn)行統(tǒng)計(jì),得到如圖所示的樣本莖葉圖,則該樣本的中位數(shù)和眾數(shù)分別是( 。
A.46,45B.45,46C.45,45D.47,45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,若(2a+i)(1-2i)是純虛數(shù),則實(shí)數(shù)a=( 。
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.△ABC的內(nèi)角A、B、C所對(duì)的邊分別是,a、b、c,△ABC的面積S=$\frac{\sqrt{3}}{2}$$\overrightarrow{AB}$•$\overrightarrow{AC}$.
(Ⅰ)求A的大;
(Ⅱ)若b+c=5,a=$\sqrt{7}$,求△ABC的面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.中國古代數(shù)學(xué)名著《張丘建算經(jīng)》中記載:“今有馬行轉(zhuǎn)遲,次日減半,疾七日,行七百里其意是:現(xiàn)有一匹馬行走的速度逐漸變慢,每天走的里數(shù)是前一天的一半,連續(xù)行走7天,共走 了 700里.若該匹馬按此規(guī)律繼續(xù)行走7天,則它這14天內(nèi)所走的總路程為( 。
A.$\frac{175}{32}$里B.1050 里C.$\frac{22575}{32}$里D.2100里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2sin Acos B=2sin C-sin B.
(I)求角A;
(Ⅱ)若a=4$\sqrt{3}$,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“一支醫(yī)療救援隊(duì)里的醫(yī)生和護(hù)士,包括我在內(nèi),總共是13名,下面講到人員情況,無論是否把我計(jì)算在內(nèi),都不會(huì)有任何變化,在這些醫(yī)務(wù)人員中:①護(hù)士不少于醫(yī)生;②男醫(yī)生多于女護(hù)士;③女護(hù)士多于男護(hù)士;④至少有一位女醫(yī)生.”由此推測這位說話人的性別和職務(wù)是(  )
A.男護(hù)士B.女護(hù)士C.男醫(yī)生D.女醫(yī)生

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.計(jì)算:4cos50°-tan40°=( 。
A.$\sqrt{3}$B.$\frac{\sqrt{2}+\sqrt{3}}{2}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案