【題目】下列函數(shù)既是奇函數(shù)又在(﹣1,1)上是減函數(shù)的是( 。
A. B.
C. y=x﹣1D. y=tanx
【答案】B
【解析】
對各選項(xiàng)逐一判斷即可,
利用在上為增函數(shù),在上為減函數(shù),即可判斷A選項(xiàng)不滿足題意,
令,即可判斷其在遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性判斷法則即可判斷B選項(xiàng)滿足題意
對于C,D,由初等函數(shù)性質(zhì),直接判斷其不滿足題意.
解:根據(jù)題意,依次分析選項(xiàng):
對于A,在上為增函數(shù),在上為減函數(shù),所以y(3x﹣3﹣x)在R上為增函數(shù),不符合題意;
對于B,,所以是奇函數(shù),
令,則由,兩個(gè)函數(shù)復(fù)合而成
又,它在上單調(diào)遞增
所以既是奇函數(shù)又在(﹣1,1)上是減函數(shù),符合題意,
對于C,y=x﹣1是反比例函數(shù),是奇函數(shù),但它在(﹣1,1)上不是減函數(shù),不符合題意;
對于D,y=tanx為正切函數(shù),是奇函數(shù),但在(﹣1,1)上是增函數(shù),不符合題意;
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-1|+|x-2|.
(1)求不等式f(x)≥3的解集;
(2)若存在實(shí)數(shù)x滿足f(x)≤-a2+a+7,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,則_____.
【答案】
【解析】
分子分母同時(shí)除以,把目標(biāo)式轉(zhuǎn)為的表達(dá)式,代入可求.
,則
故答案為:.
【點(diǎn)睛】
本題考查三角函數(shù)的化簡求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進(jìn)行弦化切;(2)“1”的靈活代換和的關(guān)系進(jìn)行變形、轉(zhuǎn)化.
【題型】填空題
【結(jié)束】
15
【題目】如圖,正方體的棱長為1,為中點(diǎn),連接,則異面直線和所成角的余弦值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義“規(guī)范01數(shù)列”如下:共有項(xiàng),其中項(xiàng)為0,項(xiàng)為1,且對任意,,,…,中0的個(gè)數(shù)不少于1的個(gè)數(shù).若,則不同的“規(guī)范01數(shù)列”共有( )
A. 14個(gè) B. 13個(gè) C. 15個(gè) D. 12個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: =1(y≥0),直線l:y=kx+1與曲線C交于A,D兩點(diǎn),A,D兩點(diǎn)在x軸上的射影分別為點(diǎn)B,C.記△OAD的面積S1 , 四邊形ABCD的面積為S2 . (Ⅰ)當(dāng)點(diǎn)B坐標(biāo)為(﹣1,0)時(shí),求k的值;
(Ⅱ)若S1= ,求線段AD的長;
(Ⅲ)求 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),關(guān)于x的方程有3個(gè)不同的實(shí)數(shù)根,則( )
A. b<﹣2且c>0B. b>﹣2且c<0C. b=﹣2且c=0D. b>﹣2且c=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)旅游局欲將一塊長20百米,寬10百米的矩形空地ABCD建成三星級鄉(xiāng)村旅游園區(qū),園區(qū)內(nèi)有一景觀湖EFG(如圖中陰影部分)以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy,O為園區(qū)正門,園區(qū)北門P在y正半軸上,且PO=10百米。景觀湖的邊界線符合函數(shù)的模型。
(1)若建設(shè)一條與AB平行的水平通道,將園區(qū)分成面積相等的兩部分,其中湖上的部分建成玻璃棧道,求玻璃棧道的長度。
(2)若在景觀湖邊界線上一點(diǎn)M修建游船碼頭,使得碼頭M到正門O的距離最短,求此時(shí)M點(diǎn)的橫坐標(biāo)。
(3)設(shè)圖中點(diǎn)B為倉庫所在地,現(xiàn)欲在線段OB上確定一點(diǎn)Q建貨物轉(zhuǎn)運(yùn)站,將貨物從點(diǎn)B經(jīng)Q點(diǎn)直線轉(zhuǎn)運(yùn)至點(diǎn)P(線路PQ不穿過景觀湖),使貨物轉(zhuǎn)運(yùn)距離QB+PQ最短,試確定點(diǎn)P的位置。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)如表所示是某市最近5年個(gè)人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計(jì)第6年該市的個(gè)人年平均收入(保留三位有效數(shù)字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是從調(diào)查某行業(yè)個(gè)人平均收入與接受專業(yè)培訓(xùn)時(shí)間關(guān)系得到2×2列聯(lián)表:
受培時(shí)間一年以上 | 受培時(shí)間不足一年 | 總計(jì) | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
總計(jì) | 100 |
完成上表,并回答:能否在犯錯(cuò)概率不超過0.05的前提下認(rèn)為“收入與接受培訓(xùn)時(shí)間有關(guān)系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com