【題目】已知n為正整數(shù),數(shù)列{an}滿足an>0, ,設(shè)數(shù)列{bn}滿足
(1)求證:數(shù)列 為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Sn , 對(duì)任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.
【答案】
(1)證明:∵數(shù)列{an}滿足an>0, ,
∴ =4 ,∴ =2 ,
∴數(shù)列 為等比數(shù)列,其首項(xiàng)為a1,公比為2
(2)解:由(1)可得: =a12n﹣1,
an= , = .
∵數(shù)列{bn}是等差數(shù)列,∴2b2=b1+b3,
∴ = + ,
解得t=4或12.
t=4時(shí),bn= = ,是關(guān)于n的一次函數(shù),因此數(shù)列{bn}是等差數(shù)列.
t=12時(shí),bn= ,bn+1﹣bn= ,不是關(guān)于n的一次函數(shù),
因此數(shù)列{bn}不是等差數(shù)列.
綜上可得t=4
(3)解:由(2)得bn= ,
對(duì)任意的n∈N*,均存在m∈N*,使得8a12Sn﹣a14n2=16bm成立,
即有8a14 n(1+n)﹣a14n2=16 ,
化簡(jiǎn)可得m= ,
當(dāng)a1=2k,k∈N*,m= =nk2,對(duì)任意的n∈N*,符合題意;/span>
當(dāng)a1=2k﹣1,k∈N*,當(dāng)n=1時(shí),m= = =k2﹣k+ ,
對(duì)任意的n∈N*,不符合題意.
綜上可得,當(dāng)a1=2k,k∈N*,對(duì)任意的n∈N*,均存在m∈N*,
使得8a12Sn﹣a14n2=16bm成立
【解析】(1)由題意整理可得, =2 ,再由等比數(shù)列的定義即可得證;(2)運(yùn)用等比數(shù)列的通項(xiàng)公式和等差數(shù)列中項(xiàng)的性質(zhì),可得2b2=b1+b3 , 解方程可得t,對(duì)t的值,檢驗(yàn)即可得到所求值;(3)由(2)可得bn= ,對(duì)任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,即有8a14 n(1+n)﹣a14n2=16 ,討論a1為偶數(shù)和奇數(shù),化簡(jiǎn)整理,即可得到所求值.
【考點(diǎn)精析】利用等差數(shù)列的性質(zhì)和數(shù)列的通項(xiàng)公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項(xiàng)和為Sn .
(Ⅰ)求an;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在的直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線的方程為x﹣2y﹣5=0.
(1)求直線BC的方程;
(2)求直線BC關(guān)于CM的對(duì)稱直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若Sn=2an﹣3n.
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)an;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,異面直線AD1與BD所成的角為;若AB的中點(diǎn)為M,DD1的中點(diǎn)為N,則異面直線B1M與CN所成的角為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的所有棱長(zhǎng)均為a,M是BC的中點(diǎn),側(cè)面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求證:BC⊥C1M;
(Ⅱ)求二面角A1﹣AB﹣C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1= ,an+1= ,n=1,2,3,…. (Ⅰ)證明:數(shù)列{ ﹣1}是等比數(shù)列;
(Ⅱ)求數(shù)列 { }的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com