1.平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=3,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 直接展開$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=3,代入|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1可得向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.

解答 解:由|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,且$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=3,得:
$|\overrightarrow{a}{|}^{2}+\overrightarrow{a}•\overrightarrow=3$,即$|\overrightarrow{a}{|}^{2}+|\overrightarrow{a}||\overrightarrow|cos<\overrightarrow{a},\overrightarrow>=3$,
∴4+2cos<$\overrightarrow{a},\overrightarrow$>=3,得cos<$\overrightarrow{a},\overrightarrow$>=$-\frac{1}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了由數(shù)量積求向量的夾角,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x∈(-1,3),則函數(shù)y=(x-2)2的值域是( 。
A.(1,4)B.[0,9)C.[0,9]D.[1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,有如下兩個(gè)命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( 。
A.命題q,p都正確B.命題p正確,命題q不正確
C.命題q,p都不正確D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f:x→|x|+1是非空集合A到非空集合B的映射,若A={-1,0,1}且集合B只有兩個(gè)元素,則B={1,2};若B={1,2},則滿足條件的集合A的個(gè)數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}(3a-1)x+4a(x≤1)\\{log_a}x(x>1)\end{array}$是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.(0,1)B.$(0,\frac{1}{3})$C.$[\frac{1}{7},\frac{1}{3})$D.$[\frac{1}{7},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)時(shí)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x5-1;當(dāng)-1≤x≤1時(shí),f(-x)=-f(x);當(dāng)x>0時(shí),f(x+1)=f(x),則f(2016)═( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{2(x-a)}{{x}^{2}+bx+1}$是奇函數(shù).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)關(guān)于x的不等式2m-1>f(x)有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正三棱錐的底面邊長是3,高為$\frac{1}{2}$,則這個(gè)正三棱錐的側(cè)面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列四個(gè)命題:
(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0時(shí)也是增函數(shù),所以f(x)是增函數(shù);
(2)若m=loga2,n=logb2且m>n,則a<b;
(3)函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是減函數(shù),則實(shí)數(shù)a的取值范圍是a≤-3;
(4)y=log${\;}_{\frac{1}{2}}}$(x2+x-2)的減區(qū)間為(1,+∞).
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案