分析:(1)對f(x)求導(dǎo),根據(jù)條件知f′(0)=0,即可求常數(shù)b的值;
(2)f′(x)=-aln(1+x)+
-1,f″(x)=-
,分類討論,確定函數(shù)的單調(diào)性,即可求實(shí)數(shù)a的取值范圍;
(3)對要證明的不等式等價(jià)變形如下:(
)
10000.4<e<(
)
1000.5.所以可以考慮證明:對于任意的正整數(shù)n,不等式
(1+)n+<e<
(1+)n+恒成立.
解答:
(1)解:對f(x)求導(dǎo)得:f′(x)=-aln(1+x)+
-b,
根據(jù)條件知f′(0)=0,所以1-b=0,
所以b=1.(3分)
(2)解:由(1)得f(x)=(1-ax)ln(x+1)-x,0≤x≤1
f′(x)=-aln(1+x)+
-1
f″(x)=-
.
①當(dāng)a≤-
時(shí),由于0≤x≤1,有f″(x)≥0,于是f′(x)在[0.1]上單調(diào)遞增,從而f′(x)≥f′(0)=0,因此f(x)在[0.1]上單調(diào)遞增,即f(x)≥f(0)而且僅有f(0)=0;
②當(dāng)a≥0時(shí),由于0≤x≤1,有f″(x)<0,于是f′(x)在[0.1]上單調(diào)遞減,從而f′(x)≤f′(0)=0,因此f(x)在[0.1]上單調(diào)遞減,即f(x)≤f(0)而且僅有f(0)=0;
③當(dāng)-
<a<0時(shí),令
m=min{1,-},當(dāng)0≤x≤m時(shí),f″(x)<0,于是f′(x)在[0,m]上單調(diào)遞減,從而f′(x)≤f′(0)=0,因此f(x)在[0,m]上單調(diào)遞減,
即f(x)≤f(0)而且僅有f(0)=0.
綜上可知,所求實(shí)數(shù)a的取值范圍是(-∞,-
].(8分)
(3)證明:對要證明的不等式等價(jià)變形如下:(
)
10000.4<e<(
)
1000.5.
所以可以考慮證明:對于任意的正整數(shù)n,不等式
(1+)n+<e<
(1+)n+恒成立.
并且繼續(xù)作如下等價(jià)變形
| (1+)ln(1+)-<0(p) | (1+)ln(1+)->0(q) |
| |
對于(p)相當(dāng)于(2)中a=-
∈(-
,0),
m=情形,有f(x)在[0,
]上單調(diào)遞減,即f(x)≤f(0)而且僅有f(0)=0.
取x=
,當(dāng)n≥2時(shí),(p)成立;
當(dāng)n=1時(shí),(p)成立.
從而對于任意正整數(shù)n都有(p)成立.
對于(q)相當(dāng)于(2)中a=-
情形,對于任意x∈[0,1],恒有f(x)≥f(0)而且僅有f(0)=0.
取x=
,得:對于任意正整數(shù)n都有(q)成立.
因此對于任意正整數(shù)n,不等式
(1+)n+<e<
(1+)n+恒成立.
這樣依據(jù)不等式
(1+)n+<e<
(1+)n+,再令n=10000利用左邊,令n=1000利用右邊,即可得到(
)
10000.4<e<(
)
1000.5成立.(12分)