18.已知函數(shù)f(x)=2lnx-x2
(1)討論f(x)的單調(diào)性并求最大值;
(2)設(shè)g(x)=xex-(a-1)x2-x-2lnx,若f(x)+g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;
(2)令h(x)=xex-ax2-x,構(gòu)造函數(shù)q(x)=ex+xex-2ax-1,根據(jù)函數(shù)的單調(diào)性通過討論a的范圍求出a的具體范圍即可.

解答 解:(1)由題意得:x>0,f′(x)=$\frac{2-{2x}^{2}}{x}$,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
∴f(x)在(0,1)遞增,在(1,+∞)遞減,
f(x)的最大值是f(1)=-1;
(2)由題意得:f(x)+g(x)=xex-ax2-x,
令h(x)=xex-ax2-x,h′(x)=ex+xex-2ax-1,
設(shè)q(x)=ex+xex-2ax-1,q′(x)=2ex+xex-2a,
x>0時(shí),可知2ex+xex遞增,且2ex+xex>2,
當(dāng)2a≤2即a≤1時(shí),x>0時(shí),q′(x)>0,則h′(x)遞增,
h′(x)>h′(0)=0,
則h(x)遞增,則h(x)>h(0)=0,即f(x)+g(x)≥0恒成立,
故a≤1;
2a>2即a>1時(shí),則唯一存在t>0,使得q′(t)=0,
則當(dāng)x∈(0,t)q′(x)<0,則h′(x)遞減,h′(x)<h′(0)=0,
則h(x)遞減,則h(x)<h(0)=0,
則f(x)+g(x)≥0不能在(0,+∞)上恒成立,
綜上,實(shí)數(shù)a的范圍是:a≤1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一手機(jī)廠生產(chǎn)A,B,C三種型號(hào)的手機(jī),每種型號(hào)的手機(jī)均有低配版和高配版兩種版本,某季度的產(chǎn)量如表(單位:萬部):
型號(hào)A型號(hào)B型號(hào)C
高配性1020z
低配型305060
按型號(hào)用分層抽樣的方法在這個(gè)季度生產(chǎn)的手機(jī)中抽取40部檢驗(yàn),其中有A型號(hào)手機(jī)8部.
(1)求z的值;
(2)用分層抽樣的方法在C型號(hào)的手機(jī)中抽取一個(gè)容量為6的樣本,從這6個(gè)樣本中任取2部手機(jī),求至少有1部高配版手機(jī)的概率;
(3)用隨機(jī)抽樣的方法從B型號(hào)的手機(jī)中抽取8部,經(jīng)檢驗(yàn)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.從這8個(gè)數(shù)中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等比數(shù)列1,a1,a2,a3,…,a2n,2共有2n+2項(xiàng),則a1•a2•a3…a2n=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,上頂點(diǎn)M,左、右焦點(diǎn)分別為F1,F(xiàn)2,△MF1F2的面積為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的下頂點(diǎn)為N,過點(diǎn)T(t,2)(t≠0)作直線TM,TN分別與橢圓C交于E,F(xiàn)兩點(diǎn),若△TMN的面積是△TEF的面積的$\frac{5}{4}$倍,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.意大利著名數(shù)學(xué)家裴波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,2,3,5,8,13,21,34,55,89,144…其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)所組成的數(shù)列{fn}稱為“斐波那契數(shù)列”,“斐波那契數(shù)列”有很多優(yōu)美的性質(zhì).
(Ⅰ)通過計(jì)算,發(fā)現(xiàn)f12+f22=f3,f22+f32=f5,f32+f42=f7,f42+f52=f9,照此規(guī)律,請(qǐng)你寫出第n(n∈N*)個(gè)等式;
(II)在金融市場(chǎng)中,“盧卡斯數(shù)列”與“斐波那契數(shù)列”無處不在,金融市場(chǎng)的時(shí)間和價(jià)格均服從斐波那契數(shù)列和魯卡斯數(shù)列,王居恭先生提出并論證了用魯卡斯數(shù)列預(yù)測(cè)股市變盤點(diǎn)的方法,有時(shí)準(zhǔn)確率達(dá)到十分驚人的地步.“盧卡斯數(shù)列”{ln}與“斐波那契數(shù)列”有密切的關(guān)系,它滿足:l1=1,ln=fn+1+fn-1(n≥2,n∈N*),它的前6項(xiàng)是1,3,4,7,11,18.
計(jì)算$\frac{{f}_{2}}{{f}_{1}}$,$\frac{{f}_{4}}{{f}_{2}}$,$\frac{{f}_{6}}{{f}_{3}}$,$\frac{{f}_{8}}{{f}_{4}}$,判斷它們分別是{ln}中的第幾項(xiàng),請(qǐng)你依此規(guī)律歸納出一個(gè)正確的結(jié)論,并證明該結(jié)論及(Ⅰ)中你寫出的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC是等邊三角形,|AB|=2,D為BC的中點(diǎn),求$\overrightarrow{AB}$•$\overrightarrow{BC}$和($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|1<ax<2},B={x||x|<1},且滿足A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若x,y為非零實(shí)數(shù),a=$\frac{x}{|x|}$+$\frac{y}{|y|}$,則所有不同a組成的集合為( 。
A.{-2,2}B.{0,2}C.{-2,0}D.{-2,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知復(fù)數(shù)z,|z|=$\sqrt{2}$且z+$\overline{z}$=2為實(shí)數(shù).
(1)求復(fù)數(shù)z;
(2)z為實(shí)系數(shù)一元二次方程ax2+bx+c=0的根,試求這個(gè)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案