【題目】一個(gè)袋子中有個(gè)紅球,個(gè)白球,若從中任取個(gè)球,則這個(gè)球中有白球的概率是( )

A. B. C. D.

【答案】B

【解析】

從中任取2個(gè)球,基本事件總數(shù)n=15,這2個(gè)球中有白球包含的基本事件個(gè)數(shù)m=9,由古典概型的概率公式即可得到答案.

一個(gè)袋子中有個(gè)紅球a,b,c,d,個(gè)白球A,B,從中任取個(gè)球,(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),(a,A),(b,A),(c,A),(d,A),(a,B),(b,B),(c,B),(d,B),(A,B)共有15種情況,

則這個(gè)球中有白球,(a,A),(b,A),(c,A),(d,A),(a,B),(b,B),(c,B),(d,B),(A,B)共9種情況,則概率,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,四邊形為矩形,且平面,.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)設(shè)是函數(shù)的極值點(diǎn),求的值,并求的單調(diào)區(qū)間;

(2)若對(duì)任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的方程為

(1)當(dāng)時(shí),試確定曲線的形狀及其焦點(diǎn)坐標(biāo);

(2)若直線交曲線于點(diǎn)、,線段中點(diǎn)的橫坐標(biāo)為,試問(wèn)此時(shí)曲線上是否存在不同的兩點(diǎn)關(guān)于直線對(duì)稱?

(3)當(dāng)為大于1的常數(shù)時(shí),設(shè)是曲線上的一點(diǎn),過(guò)點(diǎn)作一條斜率為的直線,又設(shè)為原點(diǎn)到直線的距離,分別為點(diǎn)與曲線兩焦點(diǎn)的距離,求證是一個(gè)定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an} 滿足a1=a,=can+1﹣c(n∈N*),其中a、c為實(shí)數(shù),且c≠0.

(1)求數(shù)列{an} 的通項(xiàng)公式;

(2)設(shè)a=,c=,bn=n(1﹣an)(n∈N*),求數(shù)列 {bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形沿對(duì)角線折成直二面角,下列結(jié)論:①異面直線所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結(jié)論是______.(寫出你認(rèn)為正確的所有結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)與點(diǎn)的距離之比為2,記動(dòng)點(diǎn)的軌跡為曲線C.

(1)求曲線C的方程;

(2)過(guò)點(diǎn)作曲線C的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸交于點(diǎn),直線與拋物線交于點(diǎn)兩點(diǎn).直線,分別交橢圓于點(diǎn)、,不重合)

(1)求證:;

(2)若,求直線的斜率的值;

(3)若為坐標(biāo)原點(diǎn),直線交橢圓,,若,且,則是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子商務(wù)平臺(tái)的管理員隨機(jī)抽取了1000位上網(wǎng)購(gòu)物者,并對(duì)其年齡(在10歲到69歲之間)進(jìn)行了調(diào)查,統(tǒng)計(jì)情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,三個(gè)年齡段的上網(wǎng)購(gòu)物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購(gòu)物者定義為“消費(fèi)主力軍”,其他年齡段內(nèi)的上網(wǎng)購(gòu)物者定義為“消費(fèi)潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取5人,再?gòu)倪@5人中抽取2人,求這2人中至少有一人是消費(fèi)潛力軍的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案