已知一條曲線C在軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到軸距離的差都等于1,

(1)求曲線C的方程;

(2)若過點(diǎn)M的直線與曲線C有兩個(gè)交點(diǎn)A,B,且,求直線 的斜率。

解:(1)設(shè)是曲線C上任意一點(diǎn),那么點(diǎn)滿足

      

化簡得:。                                 ………5分

 (2)設(shè)直線與曲線C的交點(diǎn)為,

     設(shè)直線的方程為

     由,得,           ………7分

(要滿足)

     得(1)                        ………8分

    由,得

               ………10分

    即   (2)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(Ⅰ)求曲線C的方程
(Ⅱ)是否存在正數(shù)m,對(duì)于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有
FA
FB
<0?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都等于1,
(1)求曲線C的方程;
(2)若過點(diǎn)M(-1,0)的直線與曲線C有兩個(gè)交點(diǎn)A,B,且FA⊥FB,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一條曲線C在y軸右邊,C上任意一點(diǎn)到點(diǎn)F1(2,0)的距離減去它到y(tǒng)軸距離的差都是2.
(1)求曲線C的方程;
(2)若雙曲線M:x2-
y2
t
=1(t>0)的一個(gè)焦點(diǎn)為F1,另一個(gè)焦點(diǎn)為2,過F2的直線l與M相交于A、B兩點(diǎn),直線l的法向量為
n
=(k,-1)(k>0),且
OA
OB
=0,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂一模)已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)設(shè)n是過原點(diǎn)的直線,l是與n垂直相交于點(diǎn)P,且與曲線C相交于A、B兩點(diǎn)的直線,且|
.
OP
|=1
,問:是否存在上述直線l使
.
AP
.
PB
=1
成立?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案