已知函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖像上各點的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的,把所得到的圖像再向左平移單位,得到的函數(shù)的圖像,求函數(shù)在區(qū)間上的最小值.
(1)函數(shù)f(x)的最小正周期為=.
f(x)的單調(diào)遞增區(qū)間為 , .
(2)當(dāng)x = 時,.
解析試題分析:(1)因為=,
函數(shù)f(x)的最小正周期為=.
由,,
得f(x)的單調(diào)遞增區(qū)間為 , .
(2)根據(jù)條件得=,當(dāng)時,,
所以當(dāng)x = 時,.
考點:本題主要考查三角函數(shù)的和差倍半公式的應(yīng)用,三角函數(shù)的圖象和性質(zhì),正弦型函數(shù)的圖象變換。
點評:典型題,涉及三角函數(shù)的考題,往往需要先利用三角函數(shù)公式,將函數(shù)“化一”,以便進一步研究函數(shù)的性質(zhì)。關(guān)于復(fù)合函數(shù)的單調(diào)區(qū)間的確定,遵循“內(nèi)外層函數(shù),同增異減”。本題(3)涉及角的范圍,極易出錯,應(yīng)特別注意。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)·(其中>o),且函數(shù)的最小正周期為
(I)求f(x)的最大值及相應(yīng)x的取值
(Ⅱ)將函數(shù)y= f(x)的圖象向左平移單位長度,再將所得圖象各點的橫坐標(biāo)縮小為原來的倍(縱坐標(biāo)不變)得到函數(shù)y=g(x)的圖象.求函數(shù)g(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)當(dāng)時,求函數(shù)的最值及相應(yīng)的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中,
(1)若時,求的最大值及相應(yīng)的的值;
(2)是否存在實數(shù),使得函數(shù)最大值是?若存在,求出對應(yīng)的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的圖像如圖所示,其中,,.
(1)求出A、、的值;
(2)由函數(shù)經(jīng)過平移變換可否得到函數(shù)的圖像?若能,平移的最短距離是多少個單位?否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當(dāng)時,函數(shù),其圖象如圖
(1)求函數(shù)在的表達式;
(2)求方程的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)關(guān)于x的函數(shù)y=2cos2x﹣2acosx﹣(2a+1)的最小值為f(a),試確定滿足的a的值,并對此時的a值求y的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com