a0fx=R上的偶函數(shù).

1)求a的值;

2)證明fx)在(0,+)上是增函數(shù).

 

答案:
解析:

解:(1)∵fx)=R上的偶函數(shù),∴fx)-f(-x)=0.

exe-x不可能恒為“0”,∴當a=0時等式恒成立,∴a=1.

(2)在(0,+∞)上任取x1x2,

fx1)-fx2)=

e>1,∴0<>1,∴>1<0,

fx1)-fx2)<0,

fx)是在[0,+∞]上的增函數(shù).

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=ax2+bx+c,若曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π4
]
,則P到曲線y=f(x)的對稱軸的距離的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=
ex
a
+
a
ex
是R上的偶函數(shù).則a的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下五個命題
①設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π
4
],則點P到曲線y=f(x)對稱軸距離的取值范圍為[0,
1
2a
];
②一質點沿直線運動,如果由始點起經過t稱后的位移為s=
1
3
t3-
3
2
t2+2t
,那么速度為零的時刻只有1秒末;
③若函數(shù)f(x)=loga(x3-ax)(a>0,且a≠1)在區(qū)間(-
1
2
,0)
內單調遞增,則a的取值范圍是[
3
4
,1)

④定義在R上的偶函數(shù)f(x),滿足f(x+1)=-f(x),則f(x)的圖象關于x=1對稱;
⑤函數(shù)y=f(x-2)和y=f(2-x)的圖象關于直線x=2對稱.其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,f(x)=x2+a|lnx-1|.
(1)當a=2時,求f(x)的單調區(qū)間;
(2)當x∈[1,+∞)時,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0函數(shù)f(x)=x3-ax在[1,+∞)上是單調函數(shù).
(1)求實數(shù)a的取值范圍;
(2)設x0≥1,f(x1)≥1,且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

同步練習冊答案