15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,P($\frac{2\sqrt{6}}{3}$,1)為橢圓C上的點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=kx+b(k≠0)與橢圓C交于不同的兩點(diǎn),且線段AB的垂直平分線過(guò)定點(diǎn)M($\frac{1}{6}$,0),求實(shí)數(shù)k的取值范圍.

分析 (Ⅰ)運(yùn)用橢圓的離心率公式和P的坐標(biāo)滿足橢圓方程,以及a,b,c的關(guān)系,解方程可得a,b,進(jìn)而得到橢圓方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),將直線方程代入橢圓方程,消去y,運(yùn)用韋達(dá)定理和判別式大于0,求得線段AB的中點(diǎn)坐標(biāo),求得AB的垂直平分線方程,代入中點(diǎn)坐標(biāo),化簡(jiǎn)整理,可得k的不等式,解不等式即可得到所求k的范圍.

解答 解:(Ⅰ)依題意,得$\left\{\begin{array}{l}{e=\frac{c}{a}=\frac{\sqrt{{a}^{2}-^{2}}}{a}=\frac{1}{2}}\\{\frac{8}{3{a}^{2}}+\frac{1}{^{2}}=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=2}\\{b=\sqrt{3}}\end{array}\right.$,
故橢圓C的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+b}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,消去y,
得(4k2+3)x2+8kbx+4b2-12=0,
依題意△=(8kb)2-4(3+4k2)(4b2-12)>0,
即b2<3+4k2,
而x1+x2=-$\frac{8kb}{3+4{k}^{2}}$,則y1+y2=k(x1+x2)+2b=$\frac{6b}{3+4{k}^{2}}$,
所以線段AB的中點(diǎn)坐標(biāo)為(-$\frac{4kb}{3+4{k}^{2}}$,$\frac{3b}{3+4{k}^{2}}$).
因?yàn)榫段AB的垂直平分線的方程為y=-$\frac{1}{k}$(x-$\frac{1}{6}$).
所以(-$\frac{4kb}{3+4{k}^{2}}$,$\frac{3b}{3+4{k}^{2}}$)在直線y=-$\frac{1}{k}$(x-$\frac{1}{6}$)上,
即$\frac{3b}{3+4{k}^{2}}$=-$\frac{1}{k}$(-$\frac{4kb}{3+4{k}^{2}}$-$\frac{1}{6}$).
則有b=-$\frac{1}{6k}$(3+4k2),
所以$\frac{(3+4{k}^{2})^{2}}{36{k}^{2}}$<3+4k2,
故k2>$\frac{3}{32}$.解得k<-$\frac{\sqrt{6}}{8}$或k>$\frac{\sqrt{6}}{8}$.
則實(shí)數(shù)k的取值范圍是(-∞,-$\frac{\sqrt{6}}{8}$)∪($\frac{\sqrt{6}}{8}$,+∞).

點(diǎn)評(píng) 本題考查橢圓方程的求法,注意運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,考查直線的斜率的取值范圍,注意運(yùn)用直線方程和橢圓方程聯(lián)立,運(yùn)用判別式大于0和韋達(dá)定理,以及中點(diǎn)坐標(biāo)公式,兩直線垂直的條件:斜率之積為-1,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|y=lg(4-x2)},集合B={x|2x<1},則A∩B=( 。
A.{x|x<0}B.{x|-2<x<2}C.{x|-2<x<0}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={x|x=a+$\frac{1}{6}$,a∈Z},B={x|x=$\frac{2}$-$\frac{1}{3}$,b∈Z},C={x|x=$\frac{c}{2}$+$\frac{1}{6}$,c∈Z},則A,B,C之間的關(guān)系是( 。
A.A=B?CB.A?B=CC.A?B?CD.B?C=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d≠0,Sn為數(shù)列{an}的前n項(xiàng)和.若向量$\overrightarrow m$=({a1,a3),$\overrightarrow n$=(a13,-a3),且$\overrightarrow m$•$\overrightarrow n$=0,則$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值為( 。
A.4B.3C.2$\sqrt{3}$-2D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知y=f(x)為偶函數(shù),當(dāng)x≥0時(shí),f(x)=-x2+2x,則滿足f(f(a))=$\frac{1}{2}$的實(shí)數(shù)a的個(gè)數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)的定義域?yàn)镈,若滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);、谌舸嬖赱a,b]⊆D,使得f(x)在[a,b]上的值域?yàn)閇2a,2b],則稱(chēng)函數(shù)f(x)為“成功函數(shù)”.若函數(shù)f(x)=logc(c4x+3t)(c>0,c≠1)是“成功函數(shù)”,則t的取值范圍為(0,$\frac{1}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.直線y=kx+m與橢圓有$\frac{x^2}{2}+{y^2}=1$兩個(gè)不同的交點(diǎn)M、N
(1)若直線l過(guò)橢圓的左焦點(diǎn)F,且線段MN的中點(diǎn)P在直線x+y=0上,求直線l的方程
(2)若k=1,且以線段MN為直徑的圓過(guò)點(diǎn)A(1,0),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知點(diǎn)A(-2,0),P是⊙O:x2+y2=4上任意一點(diǎn),P在x軸上的射影為Q,$\overrightarrow{QP}$=2$\overrightarrow{QG}$,動(dòng)點(diǎn)G的軌跡為C,直線y=kx(k≠0)與軌跡交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N.
(1)求軌跡C的方程;
(2)以MN為直徑的圓是否經(jīng)過(guò)定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)=x-ln(x+1)+m,若函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程為x-2y+1-2ln2=0
(1)求實(shí)數(shù)m的值
(2)若對(duì)于任意的x∈(-1,0],總有f(x)≥ax2,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案