【題目】關(guān)于函數(shù)fx=有如下四個(gè)命題:

fx)的圖像關(guān)于y軸對(duì)稱.

fx)的圖像關(guān)于原點(diǎn)對(duì)稱.

fx)的圖像關(guān)于直線x=對(duì)稱.

fx)的最小值為2

其中所有真命題的序號(hào)是__________

【答案】②③

【解析】

利用特殊值法可判斷命題①的正誤;利用函數(shù)奇偶性的定義可判斷命題②的正誤;利用對(duì)稱性的定義可判斷命題③的正誤;取可判斷命題④的正誤.綜合可得出結(jié)論.

對(duì)于命題①,,,則

所以,函數(shù)的圖象不關(guān)于軸對(duì)稱,命題①錯(cuò)誤;

對(duì)于命題②,函數(shù)的定義域?yàn)?/span>,定義域關(guān)于原點(diǎn)對(duì)稱,

,

所以,函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,命題②正確;

對(duì)于命題③,,

,則,

所以,函數(shù)的圖象關(guān)于直線對(duì)稱,命題③正確;

對(duì)于命題④,當(dāng)時(shí),,則,

命題④錯(cuò)誤.

故答案為:②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的方程為,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求直線l的直角坐標(biāo)方程;

2)已知P是曲線C上的一動(dòng)點(diǎn),過點(diǎn)P作直線交直線于點(diǎn)A,且直線與直線l的夾角為45°,若的最大值為6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)當(dāng)時(shí),是什么曲線?

2)當(dāng)時(shí),求的公共點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)國民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實(shí)施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見下表:

實(shí)施項(xiàng)目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實(shí)施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在上的函數(shù),滿足,且對(duì)任意的,恒有,已知當(dāng)時(shí),,則有( 。

A.函數(shù)的最大值是1,最小值是

B.函數(shù)是周期函數(shù),且周期為2

C.函數(shù)上遞減,在上遞增

D.當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生興趣小組隨機(jī)調(diào)查了某市100天中每天的空氣質(zhì)量等級(jí)和當(dāng)天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):

鍛煉人次

空氣質(zhì)量等級(jí)

[0,200]

(200,400]

(400600]

1(優(yōu))

2

16

25

2(良)

5

10

12

3(輕度污染)

6

7

8

4(中度污染)

7

2

0

1)分別估計(jì)該市一天的空氣質(zhì)量等級(jí)為1,2,3,4的概率;

2)求一天中到該公園鍛煉的平均人次的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

3)若某天的空氣質(zhì)量等級(jí)為12,則稱這天空氣質(zhì)量好;若某天的空氣質(zhì)量等級(jí)為34,則稱這天空氣質(zhì)量不好.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān)?

人次≤400

人次>400

空氣質(zhì)量好

空氣質(zhì)量不好

附:,

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知,曲線的交點(diǎn)A, B滿足(A為第一象限的點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)購已經(jīng)成為我們?nèi)粘I钪械囊徊糠,某地區(qū)隨機(jī)調(diào)查了100名男性和100名女性在雙十一活動(dòng)中用于網(wǎng)購的消費(fèi)金額,數(shù)據(jù)整理如下:

男性消費(fèi)金額頻數(shù)分布表

消費(fèi)金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數(shù)

15

15

20

30

20

1)試分別計(jì)算男性、女性在此活動(dòng)中的平均消費(fèi)金額;

2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過200元的消費(fèi)稱作理性消費(fèi),試問是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,,.給出以下四個(gè)命題:

①分別過點(diǎn),,作的不同于軸的切線,兩切線相交于點(diǎn),則點(diǎn)的軌跡為橢圓的一部分;

②若相切于點(diǎn),則點(diǎn)的軌跡恒在定圓上;

③若,相離,且,則與,都外切的圓的圓心在定橢圓上;

④若,相交,且,則與,一個(gè)內(nèi)切一個(gè)外切的圓的圓心的軌跡為橢圓的一部分.

則以上命題正確的是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案