【題目】為了讓學(xué)生了解環(huán)保知識,增強環(huán)保意識,某中學(xué)舉行了一次環(huán)保知識競賽,共有900名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

1)填充頻率分布表的空格(將答案直接填在表格內(nèi));

2)補全頻數(shù)分布直方圖;

3)若成績在75.585的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?

【答案】1)詳見解析;(2)詳見解析;(3234.

【解析】

1)計算第二組的頻數(shù)為,第三組的頻率為,第四組的頻數(shù)為:,頻率為:,得到答案.

2)根據(jù)表格補全頻數(shù)分布直方圖得到答案.

3)計算成績在75.5~85的學(xué)生頻率為0.26,得到答案.

1)由已知樣本容量為50,故第二組的頻數(shù)為,第三組的頻率為,

第四組的頻數(shù)為:,頻率為:,

故頻率分布表為:

分組

頻數(shù)

頻率

50.~60

4

0.8

60.570.5

8

0.16

70.580.5

10

0.20

80.590.5

16

0.32

90.5100.5

12

0.24

合計

50

1.00

2)如圖:

3)成績在75.5~80的學(xué)生占70.5~80的學(xué)生的,因為成績在70.5~80的學(xué)生頻率為0.2,所以成績在75.5~80的學(xué)生頻率為0.1.

成績在80.5~85的學(xué)生占80.5~90的學(xué)生的,因為成績在80.5~90的學(xué)生頻率為0.32,所以成績在80.5~85的學(xué)生頻率為0.16

所以成績在75.5~85的學(xué)生頻率為0.26,由于有900名學(xué)生參加了這次競賽,

所以該校獲得二等獎的學(xué)生約為(人).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且短軸長為2.

1)求橢圓的標準方程;

2)已知分別為橢圓的左右頂點, ,,且,直線分別與橢圓交于兩點,

(i)用表示點的縱坐標;

(ii)若面積是面積的5倍,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年5月27日當今世界圍棋排名第一的柯潔在與的人機大戰(zhàn)中中盤棄子認輸,至此柯潔與的三場比賽全部結(jié)束,柯潔三戰(zhàn)全負,這次人機大戰(zhàn)再次引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機抽取了100名學(xué)生進行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)請根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計

10

55

合計

(2)為了進一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機抽取2人出賽,求2人恰好一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且直線經(jīng)過曲線的左焦點

(1)求的值及直線的普通方程;

(2)設(shè)曲線的內(nèi)接矩形的周長為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某輛汽車以千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),且

(1)若汽車以千米/小時的速度行駛時,每小時的油耗為升,欲使每小時的油耗不超過升,求的取值范圍;

(2)求該汽車行駛千米的油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地舉辦水果觀光采摘節(jié),并推出配套旅游項目,統(tǒng)計了4月份100名游客購買水果的情況,得到如圖所示的頻率分布直方圖.

1)若將消費金額不低于80元的游客稱為“水果達人”,現(xiàn)用分層抽樣的方法從樣本的“水果達人”中抽取5人,求這5人中消費金額不低于100元的人數(shù);

2)從(1)中的5人中抽取2人作為幸運客戶免費參加配套旅游項目,請列出所有的可能結(jié)果,并求這2人中至少有1人購買金額不低于100元的概率;

3)為吸引顧客,該地特推出兩種促銷方案,

方案一:每滿80元可立減8元;

方案二:金額超過50元但又不超過80元的部分打9折,金額超過80元但又不超過100元的部分打8折,金額超過100元的部分打7折.

若水果的價格為11元/千克,某游客要購買10千克,應(yīng)該選擇哪種方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》 是我國古代的天文學(xué)和數(shù)學(xué)著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,且,三點中恰有兩點在拋物線上,另一點是拋物線的焦點.

(1)求證:、、三點共線;

(2)若直線過拋物線的焦點且與拋物線交于、兩點,點軸的距離為,點軸的距離為,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案