試題分析:(I)取AB中點M,連FM,GM.由題設易得四邊形GMFE為平行四邊形,從而得EG∥平面ABF;(Ⅱ)顯然轉化為求三棱錐E-ABG的體積.注意到平面ABCD⊥平面AFED,故作EN⊥AD,垂足為N,則有EN⊥平面ABCD,即EN為三棱錐E-ABG的高.由此即可得其體積;(Ⅲ)為了判斷平面BAE、平面DCE是否垂直,首先看看在這兩個面中有哪些線是相互垂直的.由平面ABCD⊥平面AFED,四邊形ABCD為矩形可得,CD⊥平面AFED,從而 CD⊥AE.另外根據(jù)題中所給數(shù)據(jù),利用勾股定理可判斷ED⊥AE.由此可知,平面BAE⊥平面DCE.
試題解析:(I)證明:取AB中點M,連FM,GM.
∵G為對角線AC的中點,
∴GM∥AD,且GM=
AD,
又∵FE∥
AD,
∴GM∥FE且GM=FE.
∴四邊形GMFE為平行四邊形,即EG∥FM.
又∵
平面ABF,
平面ABF,
∴EG∥平面ABF. 4分
(Ⅱ)解:作EN⊥AD,垂足為N,
由平面ABCD⊥平面AFED ,面ABCD∩面AFED=AD,
得EN⊥平面ABCD,即EN為三棱錐E-ABG的高.
∵在△AEF中,AF=FE,∠AFE=60º,
∴△AEF是正三角形.
∴∠AEF=60º,
由EF//AD知∠EAD=60º,
∴EN=AE?sin60º=
.
∴三棱錐B-AEG的體積為
. 8分
(Ⅲ)解:平面BAE⊥平面DCE.證明如下:
∵四邊形ABCD為矩形,且平面ABCD⊥平面AFED,
∴CD⊥平面AFED,
∴CD⊥AE.
∵四邊形AFED為梯形,F(xiàn)E∥AD,且
,
∴
.
又在△AED中,EA=2,AD=4,
,
由余弦定理,得ED=
.
∴EA
2+ED
2=AD
2,
∴ED⊥AE.
又∵ED∩CD=D,
∴AE⊥平面DCE,
又
面BAE,
∴平面BAE⊥平面DCE. 12分