【題目】已知某校有歌唱和舞蹈兩個興趣小組,其中歌唱組有 4 名男生,1 名女生,舞蹈組有2 名男生,2 名女生,學校計劃從兩興趣小組中各選2名同學參加演出.

(1)求選出的4名同學中至多有2名女生的選派方法數(shù);

(2)記X為選出的4名同學中女生的人數(shù),求X的分布列和數(shù)學期望.

【答案】(1)56種 (2)見解析

【解析】

(1)利用間接法求出選出的4名同學中至多有2名女生的選派方法數(shù);(2)由題得X 的可能取值為 0,1,2,3.再求出它們對應的概率,寫出分布列,求出數(shù)學期望.

解:(1)由題意知,所有的選派方法共有種,

其中有3名女生的選派方法共有種,

所以選出的 4 名同學中至多有2名女生的選派方法數(shù)為種.

(2)X 的可能取值為 0,1,2,3.

,.

,

∴X 的分布列為:

X

0

1

2

3

P

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高三文科名學生參加了月份的高考模擬考試,學校為了了解高三文科學生的歷史、地理學習情況,從名學生中抽取名學生的成績進行統(tǒng)計分析,抽出的名學生的地理、歷史成績如下表:

地理 歷史

[80,100]

[60,80

[40,60

[80,100]

8

m

9

[60,80

9

n

9

[40,60

8

15

7

若歷史成績在[80,100]區(qū)間的占30%,

(1)求的值;

(2)請根據(jù)上面抽出的名學生地理、歷史成績,填寫下面地理、歷史成績的頻數(shù)分布表:

[80,100]

[60,80

[40,60

地理

歷史

根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計歷史和地理的平均成績及方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表),并估計哪個學科成績更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司發(fā)放員工的薪水有三種方式:①第一個月工資3000元,以后每月以1%的增長率增長;②第一個月工資2400元,以后每月以2%的增長率增長;③第一個月工資為3200元,每月漲工資30元.

1)設第x個月的工資分別為元,試分別建立關于x的函數(shù);

2)借助計算器計算這三種情況下各個月的工資;

3)請分析這三種領薪方法的區(qū)別,作為員工選擇何種方法更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高二年級學生某次數(shù)學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數(shù)學成績,發(fā)現(xiàn)都在內現(xiàn)將這100名學生的成績按照,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了工廠技術改造后某種型號設備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):

x(年)

2

3

4

5

6

y(萬元)

1

2.5

3

4

4.5

1)若知道yx呈線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;

2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(Ⅰ) 求曲線在點處的切線方程;

(Ⅱ) 討論函數(shù)的單調性;

(Ⅲ) 設,當時,若對任意的,存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線=1,P為雙曲線右支上除x軸上之外的一點.

1)若∠F1PF2,求△F1PF2的面積.

2)若該雙曲線與橢圓+y2=1有共同的焦點且過點A2,1),求△F1PF2內切圓的圓心軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形均為 直角梯形, ,四邊形為平行四邊形,平面平面

求證:平面平面;

是邊長為的等邊三角形,且異面直線所成的角為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點到兩點的距離之和等于,設點的軌跡為。

(1)求曲線的方程;

(2)過點作直線與曲線交于點、,以線段為直徑的圓能否過坐標原點,若能,求出直線的方程,若不能請說明理由.

查看答案和解析>>

同步練習冊答案