4.已知△ABC的頂點坐標(biāo)分別為A(1,1),B(3,1),C(4,4).
(1)求$\overrightarrow{AB}$+$\overrightarrow{BC}$的坐標(biāo);
(2)求角A的值.

分析 (1)利用向量坐標(biāo)運算性質(zhì)即可得出.
(2)利用向量夾角公式、數(shù)量積運算性質(zhì)即可得出.

解答 解:(1)$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$=(4,4)-(1,1)=(3,3).
(2)$\overrightarrow{AB}$=(2,0),$\overrightarrow{AC}$=(3,3).
∴$\overrightarrow{AB}•\overrightarrow{AC}$=6,
$cos<\overrightarrow{AB},\overrightarrow{AC}>$=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{6}{2×3\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
可得∠BAC=$\frac{π}{4}$.

點評 本題考查了向量坐標(biāo)運算性質(zhì)、向量夾角公式、數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=|${log_{\frac{1}{2}}}$x|的單調(diào)遞增區(qū)間是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知雙曲線C的右焦點為F,過F的直線l與雙曲線C交于不同兩點A、B,且A、B兩點間的距離恰好等于焦距,若這樣的直線l有且僅有兩條,則雙曲線C的離心率的取值范圍為(1,$\frac{1+\sqrt{17}}{4}$)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,設(shè)a=2,b=3,c=4.
(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$.
(1)當(dāng)a=0時,求曲線y=f(x)在點P(1,1)處的切線方程;
(2)當(dāng)a>0時,討論函數(shù)f(x)的單調(diào)性;
(3)若關(guān)于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間[-1,3]內(nèi)任取一個實數(shù)x滿足log2(x-1)>0的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n( mod m),例如10=2(mod 4).如圖程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的n等于( 。
A.20B.21C.22D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的導(dǎo)數(shù),e為自然對數(shù)的底數(shù))g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及極值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.我校教育處連續(xù)30天對同學(xué)們的著裝進(jìn)行檢查,著裝不合格的人數(shù)為如圖所示的莖葉圖,則中位數(shù),眾數(shù),極差分別是(  )
A.44,45,56B.44,43,57C.44,43,56D.45,43,57

查看答案和解析>>

同步練習(xí)冊答案