精英家教網 > 高中數學 > 題目詳情
設向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,4sinβ)
(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)求|
b
+
c
|的最大值.
分析:(1)根據向量的數乘運算及向量坐標的減法運算求出
b
-2
c
,然后由向量垂直的條件得到關于α,β的三角函數關系式,整理后即可得到tan(α+β)的值;
(2)寫出
b
+
c
,然后直接運用求模公式求出模,運用三角函數的有關公式化簡后即可求模的最大值.
解答:解:(1)∵
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),由
a
b
-2
c
垂直,∴
a
•(
b
-2
c
)=
a
b
-2
a
c
=0
,
即4sin(α+β)-8cos(α+β)=0,∴tan(α+β)=2;
(2)∵
b
=(sinβ,4cosβ),
c
=(cosβ,4sinβ)
b
+
c
=(sinβ+cosβ,4cosβ-sinβ)

|
b
+
c
|2=sin2β+2sinβcosβ+cos2β
+16cos2β-32cosβsinβ+16sin2β
=17-30sinβcosβ=17-15sin2β,最大值為32,所以|
b
+
c
|
的最大值為4
2
點評:本題考查了運用數量積判斷兩個向量的垂直關系,考查了向量的模,考查了同角三角函數間的基本關系式,考查了學生的運算能力,此題是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,四邊形ABCD中,E,F(xiàn)分別為AC、BD的中點,設向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ),且
AB
=2
b
-
a
CD
=2k
c
+
a

(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)試用
AB
、
 CD
表示
EF
;
(3)若β為自變量,求|
EF
|的最小值f(k).

查看答案和解析>>

科目:高中數學 來源: 題型:

設向量
.
a
=(4cosα,sinα),
.
b
=(sinβ,4cosβ),
.
c
=(cosβ,-4sinβ).
(1)若
.
a
.
b
-2
.
c
垂直,求tan(α+β)的值;
(2)求|
.
b
+
.
c
|的最大值;
(3)若
.
a
.
b
,求
cos(α+β)
cos(α-β)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ)
(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)若tanαtanβ=16,求證:
a
b

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,4sinβ)
(1)若
a
b
-2
c
垂直,求tan(α+β)的值;
(2)求|
b
+
c
|的最大值.

查看答案和解析>>

同步練習冊答案