l是平面α外一條直線,過l作平面β,使α∥β,這樣的β( 。
A、只能作一個
B、至少可以做一個
C、不存在
D、至多可以作一個
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:由平面與平面平行的性質(zhì)得這樣的平面β有且只有1個.
解答: 解:當(dāng)a∥α?xí)r,過a作平面β,使得β∥α,
由平面與平面平行的性質(zhì)得:
這樣的平面β有且只有1個.
a與α相交時,設(shè)平面為β,a與α交點(diǎn)為P,
根據(jù)題意P∈β,P∈α,則α∩β=l且P∈l,這與α∥β矛盾,
∴這樣的β不存在.
綜上所述,過平面α外一條直線a與α平行的平面的個數(shù)為至多1個.
故選:D.
點(diǎn)評:本題考查滿足條件的平面的個數(shù)的求法,是基礎(chǔ)題,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,若(a2+c2-b2)tanB=
3
ac,則角B的值為( 。
A、
π
6
B、
π
3
C、
π
6
6
D、
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年將在沈陽舉行第十二屆全運(yùn)會,乒乓球比賽會產(chǎn)生男子個人、女子個人、男子團(tuán)體、女子團(tuán)體共四枚金牌,保守估計,福建乒乓球男隊獲得每枚金牌的概率為
3
4
,福建乒乓球女隊獲得每枚金牌的概率均為
4
5

(1)記福建男隊獲得金牌總數(shù)為X,按此估計,求X的分布列和數(shù)學(xué)期望;
(2)按此估計,求福建乒乓球女隊比男隊多獲得一枚金牌的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+x2+ax(a∈R)
(1)若函數(shù)f(x)有一個極大值和極小值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)已知A(x1,f(x1))B(x2,f(x2)(x1≠x2)是函數(shù)f(x)在x∈[1,+∞)的圖象上的任意兩點(diǎn),且滿足
f(x1)-f(x2)
x1-x2
>2,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為異面直線,m?平面α,n?平面β,α∩β=l,則直線l(  )
A、與m,n都相交
B、與m,n都不相交
C、與m,n中至少一條相交
D、至多與m,n中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知長方體ABCD-A1B1C1D1中,AB=4
3
,AD=4
3
,AA1=4,求:
(1)A1B與DC所成的角;
(2)A1C1與AD所成的角;
(3)AC1與DD1所成的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2,D為棱AA1上的點(diǎn).
(1)若D為AA1的中點(diǎn),求證:平面B1CD⊥平面B1C1D;
(2)若直線B1D與平面ACC1A1所成角為45°,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線:x-y+m=0與雙曲線x2-
y2
2
=1交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)在圓x2+y2=5上,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把不等式2≤x≤4表示成含有絕對值的不等式|x-a|≤b,那么a=
 
,b=
 

查看答案和解析>>

同步練習(xí)冊答案