若正數(shù)a、b滿足a+b=1,求
1
a
+
1
b
的最小值.
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:不等式的解法及應(yīng)用
分析:根據(jù)題意,要求的式子變形為(
1
a
+
1
b
)(a+b),展開利用基本不等式求最小值.
解答: 解:∵正數(shù)a、b滿足a+b=1,
1
a
+
1
b
=(
1
a
+
1
b
)(a+b)=2+
b
a
+
a
b
≥2+2
b
a
a
b
=4(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立),
1
a
+
1
b
的最小值是4.
點(diǎn)評(píng):本題考查基本不等式的應(yīng)用,注意檢驗(yàn)等號(hào)成立的條件是否具備.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半圓x2+y2=3(y≥0),P為半圓上任一點(diǎn),A(2,0)為定點(diǎn),以PA為邊作正三角形PAB,(如圖所示)求四邊形POAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+70°)=
3
5
,且α是第四象限角,則cos(40°-2α)+sin(α+25°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x+1)+alog2(1-x),且f(-x)=-f(x).
(1)求函數(shù)f(x)的解析式;
(2)求證:f(a)+f(b)=f(
a+b
1+ab
)(-1<a<1,-1<b<1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市地鐵即將于2013年12月開始運(yùn)營(yíng),為此召開了一個(gè)價(jià)格聽證會(huì),擬定價(jià)格后又進(jìn)行了一次調(diào)查,隨機(jī)抽查了50人,他們?cè)率杖肱c態(tài)度如下:
月收入(單位百元)[15,25][25,35][35,45][45.55][55.65][65.75]
贊成的那個(gè)定價(jià)者人數(shù)123534
認(rèn)為價(jià)格偏高人數(shù)4812521
(1)若以區(qū)間的中點(diǎn)為該區(qū)間捏的人均月收入,求參與調(diào)查的人員中“贊成定價(jià)者”與“認(rèn)為價(jià)格偏高者”的月平均收入的差距是多少(結(jié)果保留2位小數(shù));
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表并分析是否有99%把握認(rèn)為“月收入以5500為分界點(diǎn)對(duì)地鐵定價(jià)的態(tài)度有差異”.
月收入不低于55百元的人數(shù)月收入低于55百元的人數(shù)合計(jì)
認(rèn)為價(jià)格偏高者a=c=
贊成定價(jià)者b=d=
合計(jì)
參考數(shù)據(jù):K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
P(x2≥k)0.050,01
k3.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α、β是方程x2-
10
x=2=0的兩實(shí)根,求log2
α2-αβ+β2
|α-β|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)滿足f(x)•f(x+2)=13,若f(1)=2,則f(99)=( 。
A、13
B、2
C、
2
13
D、
13
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2x-2sin2x
(1)求函數(shù)f(x)的最小正周期.
(2)求函數(shù)單調(diào)遞增區(qū)間.
(3)求函數(shù)f(x)的最大值及f(x)取最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
2x
,各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=f(an),若a2010=a2012,則a20+a11的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案