設數(shù)列{an}的各項都是正數(shù),且對任意n∈N*,都有+…+=,記Sn為數(shù)列{an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有bn+1>bn.
科目:高中數(shù)學 來源: 題型:解答題
己知各項均不相等的等差數(shù)列{an}的前四項和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設Tn為數(shù)列的前n項和,若Tn≤¨對恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列中,,其前n項和為,等比數(shù)列的各項均為正數(shù),,公比為q,且,.
(1)求與;
(2)設數(shù)列滿足,求的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設無窮數(shù)列的首項,前項和為(),且點在直線上(為與無關的正實數(shù)).
(1)求證:數(shù)列()為等比數(shù)列;
(2)記數(shù)列的公比為,數(shù)列滿足,設,求數(shù)列的前項和;
(3)若(2)中數(shù)列{Cn}的前n項和Tn當時不等式恒成立,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知單調遞增的等比數(shù)列{an}滿足:
a2+a3+a4=28,且a3+2是a2和a4的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列和等比數(shù)列中,,,是前項和.
(1)若,求實數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實數(shù),使得數(shù)列中至少有三項在數(shù)列中,但中的項不都在數(shù)列中?若存在,求出一個可能的的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)列、的每一項都是正數(shù),,,且、、成等差數(shù)列,、、成等比數(shù)列,.
(Ⅰ)求、的值;
(Ⅱ)求數(shù)列、的通項公式;
(Ⅲ)證明:對一切正整數(shù),有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設是公差大于零的等差數(shù)列,已知,.
(Ⅰ)求的通項公式;
(Ⅱ)設是以函數(shù)的最小正周期為首項,以為公比的等比數(shù)列,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com