在圓上與直線4x+3y-12=0距離最短的點是

[  ]

A.
B.
C.
D.
答案:A
解析:

解:如圖,過圓心(00)作直線4x3y12=0的垂線,垂線方程為

       ①

直線①與圓的交點就是所要求的點,

解方程組解得

故交點為

是與直線4x3y12=0距離最遠的點,而點是與直線4x3y12=0距離最近的點.∴選A


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C方程為x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線4x+3y-3=0與圓C的位置關系,并證明你的結論;
(3)當m=2時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B,使得對橢圓上任意一點Q(異于長軸端點),直線QA,QB的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知半徑為5的圓C的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y-29=0相切.
(1)求圓C的方程;
(2)設直線ax-y+5=0與圓C相交于A,B兩點,求實數(shù)a的取值范圍;
(3)在(2)的條件下,是否存在實數(shù)a,使得過點P(-2,4)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=4x按向量a=(-3,0)平移后的曲線為C,若一動圓的圓心在曲線C上,且這個動圓恒與直線x+4=0相切,則此動圓必經(jīng)過點_________________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省鎮(zhèn)江市揚中二中高三(上)1月綜合練習數(shù)學試卷(解析版) 題型:解答題

已知圓C方程為x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),橢圓中心在原點,焦點在x軸上.
(1)證明圓C恒過一定點M,并求此定點M的坐標;
(2)判斷直線4x+3y-3=0與圓C的位置關系,并證明你的結論;
(3)當m=2時,圓C與橢圓的左準線相切,且橢圓過(1)中的點M,求此時橢圓方程;在x軸上是否存在兩定點A,B,使得對橢圓上任意一點Q(異于長軸端點),直線QA,QB的斜率之積為定值?若存在,求出A,B坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省高中學業(yè)水平考試數(shù)學模擬試卷(一)(解析版) 題型:填空題

已知半徑為5的圓C的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y-29=0相切.
(1)求圓C的方程;
(2)設直線ax-y+5=0與圓C相交于A,B兩點,求實數(shù)a的取值范圍;
(3)在(2)的條件下,是否存在實數(shù)a,使得過點P(-2,4)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案