已知函數(shù)
(l)求函數(shù)的最小正周期和最大值;
(2)求函數(shù)在上的單調(diào)遞減區(qū)間.
(1), ;(2),.
解析試題分析:(1)先根據(jù)三角函數(shù)的和角公式、二倍角公式以及差角公式將已知函數(shù)化簡為:,然后根據(jù)公式求最小正周期,依據(jù)三角函數(shù)的圖像與性質(zhì)可知已知函數(shù)的最大值;(2)根據(jù)余弦函數(shù)的圖像與性質(zhì)可知, ,解得,即是函數(shù)的單調(diào)遞減區(qū)間,由已知,可得函數(shù)在區(qū)間上的單調(diào)遞減區(qū)間是,.
試題解析:
6分
函數(shù)的最小正周期為 , 7分
函數(shù)的最大值為 . 8分
(2)由得, ,
函數(shù)的單調(diào)遞減區(qū)間 , 10分
又因為,則在上的單調(diào)遞減區(qū)間為,. 12分
考點:1.三角函數(shù)的圖像與性質(zhì);2.和角公式與差角公式;3.二倍角公式;4.最小正周期;5.三角函數(shù)的單調(diào)性與最值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=x2+ax().
(1)若函數(shù)y=f(sinx+cosx)()的最大值為,求f(x)的最小值;
(2)當(dāng)a>2時,求證:f(sin2xlog2sin2x+cos2xlog2cos2x)1–a.其中x∈R,x¹kp且x¹kp(k∈Z).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,設(shè)函數(shù)的圖象關(guān)于直線對稱,其中常數(shù)
(Ⅰ)求的最小正周期;
(Ⅱ)將函數(shù)的圖像向左平移個單位,得到函數(shù)的圖像,用五點法作出函數(shù)在區(qū)間的圖像.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com