【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足(1﹣q)Sn+qan=1,且q(q﹣1)≠0.
(1)求{an}的通項(xiàng)公式;
(2)若S3 , S9 , S6成等差數(shù)列,求證:a2 , a8 , a5成等差數(shù)列.
【答案】
(1)解:當(dāng)n=1時(shí),由(1﹣q)S1+qa1=1,a1=1.
當(dāng)n≥2時(shí),由(1﹣q)Sn+qan=1,得(1﹣q)Sn﹣1+qan﹣1=1,兩式相減得:(1﹣q)an+qan﹣qan﹣1=0,即an=qan﹣1,
又q(q﹣1)≠0,所以{an}是以1為首項(xiàng),q為公比的等比數(shù)列,
故an=qn﹣1.
(2)解:由(1)可知Sn= ,又S3+S6=2S9,得 + = ,
化簡(jiǎn)得a3+a6=2a9,兩邊同除以q得a2+a5=2a8.
故a2,a8,a5成等差數(shù)列
【解析】(1)求出a1=1.利用當(dāng)n≥2時(shí),由Sn﹣Sn﹣1=an , 利用q(q﹣1)≠0,說(shuō)明{an}是以1為首項(xiàng),q為公比的等比數(shù)列,求出通項(xiàng)公式.(2)求出Sn= ,靈活S3+S6=2S9 , 得到a2+a5=2a8 . 說(shuō)明a2 , a8 , a5成等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上10,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( )
A.12.8 3.6 B.2.8 13.6 C.12.8 13.6 D.13.6 12.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,求的值;
(2)若過(guò)點(diǎn)任作一條直線與橢圓交于不同的兩點(diǎn),在軸上是否存在點(diǎn),使得 若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)f(x)的圖象恰好通過(guò)n()個(gè)整點(diǎn),則稱函數(shù)f(x)為n階整點(diǎn)函數(shù)。有下列函數(shù):
① ② ③ ④
其中是一階整點(diǎn)的是( )
A. ①②③④ B. ①③④ C. ④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖可能是下列哪個(gè)函數(shù)的圖象( )
A.y=2x﹣x2﹣1
B.y=
C.y=(x2﹣2x)ex
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}中,q=2,a2+a5+…+a98=22,則數(shù)列{an}的前99項(xiàng)的和S99=( )
A.100
B.88
C.77
D.68
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足向量 =(cosA,cosB), =(a,2c﹣b), ∥ .
(1)求角A的大;
(2)若a=2 ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊為a,b,c,若A,B,C依次成等差數(shù)列且a2+c2=kb2 , 則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com