已知f(x)=ax3+bx-4,若f(2)=6,則f(-2)(  )
分析:根據(jù)f(x)=ax3+bx-4,可得f(x)+f(-x)=-8,從而根據(jù)f(2)=6,可求f(-2)的值.
解答:解:∵f(x)=ax3+bx-4
∴f(x)+f(-x)=ax3+bx-4+a(-x)3+b×(-x)-4=-8
∴f(x)+f(-x)=-8
∵f(2)=6
∴f(-2)=-14
故選A.
點評:本題以函數(shù)為載體,考查函數(shù)的奇偶性,解題的關鍵是判斷f(x)+f(-x)=-8,以此題解題方法解答此類題,比構造一個奇函數(shù)簡捷,此法可以推廣.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx+2,且f(-5)=3,則f(5)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3-bx+1且f(-4)=7,則f(4)=
-5
-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx+1,f(-2)=2,則f(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,則f(-3)=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F(x)=ax3+bx5+cx3+dx-6,F(xiàn)(-2)=10,則F(2)的值為( 。
A、-22B、10C、-10D、22

查看答案和解析>>

同步練習冊答案