【題目】如圖,在平面直角坐標(biāo)系xOy中,焦點在x軸上的橢圓C: 經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 的值;
(3)記直線l與y軸的交點為P.若,求直線l的斜率k.
【答案】(1);(2);(3)
【解析】試題分析:(1)根據(jù)題意,把點代入橢圓的方程和,列出方程組,求解的值,即可得到橢圓的方程;
(2)設(shè),直線的方程為,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,寫出韋達定理,又由,得的方程為,聯(lián)立方程組,求得點的坐標(biāo),即可求解結(jié)論;
(3)由直線,得,求得的坐標(biāo),再根據(jù),得到,由(2)中的韋達定理,得出關(guān)于的方程,即可求解結(jié)論。
試題解析:
(1)因為橢圓+=1經(jīng)過點(b,2e),所以+=1.
因為e2==,所以+1.
因為a2=b2+c2,所以+=1.
整理得 b4-12b2+32=0,解得b2=4或b2=8(舍) .
所以橢圓C的方程為+=1.
(2)設(shè)A(x1,y1),B(x2,y2).因為T(1,0),則直線l的方程為y=k(x-1).
聯(lián)立直線l與橢圓方程
消去y,得 (2k2+1)x2-4k2x+2k2-8=0,
所以
因為MN∥l,所以直線MN方程為y=kx,
聯(lián)立直線MN與橢圓方程
消去y得 (2k2+1)x2=8,解得x2=.
因為MN∥l,所以=.
因為 (1-x1)·(x2-1)=-[x1x2-(x1+x2)+1]=,
(xM-xN)2=4x2=,
所以==·=.
(3)在y=k(x-1)中,令x=0,則y=-k,所以P(0,-k),
從而=(-x1,-k-y1),=(x2-1,/span>y2).
因為=,所以-x1= (x2-1),即x1+x2=.由(2)知,
由解得 x1=,x2=.因為x1x2=, 所以×=,
整理得 50k4-83k2-34=0,解得k2=2或k2=-(舍) .
又因為k>0,所以k=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)的定義域為D,若對于任意x1、x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某一個對稱中心,并利用對稱中心的上述定義,可得到f( )+f( )+…+f( )+f( )的值為( )
A.4027
B.﹣4027
C.8054
D.﹣8054
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù),如果存在區(qū)間(),同時滿足:
①在內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是時, 的值域也是.
則稱函數(shù)是區(qū)間上的“保值函數(shù)”.
(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;
(2)已知()是區(qū)間上的“保值函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:全集U=R,函數(shù) 的定義域為集合A,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求實數(shù)a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4—1:幾何證明選講
如圖,△ABC的頂點A,C在圓O上,B在圓外,線段AB與圓O交于點M.
(1)若BC是圓O的切線,且AB=8,BC=4,求線段AM的長度;
(2)若線段BC與圓O交于另一點N,且AB=2AC,求證:BN=2MN.
B.選修4—2:矩陣與變換
設(shè)a,b∈R.若直線l:ax+y-7=0在矩陣A= 對應(yīng)的變換作用下,得到的直線為l′:9x+y-91=0.求實數(shù)a,b的值.
C.選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,直線l: (t為參數(shù)),與曲線C: (k為參數(shù))交于A,B兩點,求線段AB的長.
D.選修4—5:不等式選講
設(shè)a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1(x≥0)的圖象經(jīng)過點(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數(shù)f(x)=a2x﹣ax﹣2+8,x∈[﹣2,1]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共種,現(xiàn)對這兩種方案生產(chǎn)的產(chǎn)品分別隨機調(diào)查了各次,得到如下統(tǒng)計表:
①生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品
正次品 | 甲正品 甲正品 乙正品 | 甲正品 甲正品 乙次品 | 甲正品 甲次品 乙正品 | 甲正品 甲次品 乙次品 | 甲次品 甲次品 乙正品 | 甲次品 甲次品 乙次品 |
頻 數(shù) |
②生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品
正次品 | 乙正品 乙正品 甲正品 | 乙正品 乙正品 甲次品 | 乙正品 乙次品 甲正品 | 乙正品 乙次品 甲次品 | 乙次品 乙次品 甲正品 | 乙次品 乙次品 甲次品 |
頻 數(shù) |
已知生產(chǎn)電子產(chǎn)品甲件,若為正品可盈利元,若為次品則虧損元;生產(chǎn)電子產(chǎn)品乙件,若為正品可盈利元,若為次品則虧損元.
(I)按方案①生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品,求這件產(chǎn)品平均利潤的估計值;
(II)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共件,欲使件產(chǎn)品所得總利潤大于元的機會多,應(yīng)選用哪個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com