設(shè)P的軌跡是曲線C,滿足:點(diǎn)P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),又點(diǎn)在曲線C上,點(diǎn)N(-1,1)在曲線C的內(nèi)部.
(1)求曲線C的方程;
(2)的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).
【答案】分析:(1)設(shè)P(x,y)的坐標(biāo),利用點(diǎn)P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),得到圓的表達(dá)式,點(diǎn)在曲線C上,求出離心率,推出軌跡方程.
(2)利用(1)的離心率,求出的表達(dá)式,然后確定最小值.
解答:解:(1)設(shè)P(x,y)則由題意可得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224833923479939/SYS201311012248339234799020_DA/3.png">在曲線C上,所以
,所以,化簡得
所以曲線C的方程為
(2)由(1)可得曲線C為橢圓且離心率,設(shè)點(diǎn)P到準(zhǔn)線l:x=-4的距離為d
所以,
所以=|PN|+d,
所以的最小值為|-1-(-4)|=3,此時(shí)點(diǎn)P的坐標(biāo)為(
點(diǎn)評:本題是中檔題,考查橢圓軌跡方程的求法,橢圓離心率的應(yīng)用,考查計(jì)算能力,高考?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P的軌跡是曲線C,滿足:點(diǎn)P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),又點(diǎn)M(2,-
2
)
在曲線C上,點(diǎn)N(-1,1)在曲線C的內(nèi)部.
(1)求曲線C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M,N分別在直線y=mx和y=-mx(m>0)上運(yùn)動,點(diǎn)P是線段MN的中點(diǎn),且|MN|=2,動點(diǎn)P的軌跡是曲線C.
(1)求曲線C的方程,并討論方程所表示的曲線類型;
(2)設(shè)m=
2
2
時(shí),過點(diǎn)A(-
2
6
3
,0)的直線l與曲線C恰有一個(gè)公共點(diǎn),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)M,N分別在直線y=mx和y=-mx(m>0)上運(yùn)動,點(diǎn)P是線段MN的中點(diǎn),且|MN|=2,動點(diǎn)P的軌跡是曲線C.
(1)求曲線C的方程,并討論方程所表示的曲線類型;
(2)設(shè)m=
2
2
時(shí),過點(diǎn)A(-
2
6
3
,0)的直線l與曲線C恰有一個(gè)公共點(diǎn),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年新人教A版高考數(shù)學(xué)一輪復(fù)習(xí)單元質(zhì)量評估08(第八章)(理科)(解析版) 題型:解答題

已知點(diǎn)M,N分別在直線y=mx和y=-mx(m>0)上運(yùn)動,點(diǎn)P是線段MN的中點(diǎn),且|MN|=2,動點(diǎn)P的軌跡是曲線C.
(1)求曲線C的方程,并討論方程所表示的曲線類型;
(2)設(shè)m=時(shí),過點(diǎn)A(-,0)的直線l與曲線C恰有一個(gè)公共點(diǎn),求直線l的斜率.

查看答案和解析>>

同步練習(xí)冊答案