10.若AD為△ABC的中線,現(xiàn)有質(zhì)地均勻的粒子散落在△ABC內(nèi),則粒子落在△ABD內(nèi)的概率等于$\frac{1}{2}$.

分析 利用幾何概型的計算概率的方法解決本題,關(guān)鍵要弄準(zhǔn)所求的隨機(jī)事件發(fā)生的區(qū)域的面積和事件總體的區(qū)域面積,通過相除的方法完成本題的解答.

解答 解:由幾何概型的計算方法,可以得出所求事件的概率為P=$\frac{{S}_{△ABD}}{{S}_{△ABC}}$=$\frac{1}{2}$.
故答案為$\frac{1}{2}$.

點評 本題考查概率的計算,考查幾何概型的辨別,考查學(xué)生通過比例的方法計算概率的問題,考查學(xué)生分析問題解決問題的能力,考查學(xué)生幾何圖形面積的計算方法,屬于基本題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則$\overrightarrow{AC}$=(  )
A.$\overrightarrow{a}$+$\overrightarrow$B.$\overrightarrow{a}$-$\overrightarrow$C.-$\overrightarrow{a}$-$\overrightarrow$D.-$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知△ABC中,b=10,A=75°,C=60°,則c=( 。
A.$5\sqrt{2}$B.$5\sqrt{6}$C.$5\sqrt{3}$D.$10\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:?x>0,x+$\frac{1}{x}$≥2命題q:若a>b,則ac>bc.下列命題為真命題的是(  )
A.qB.¬pC.p∨qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定義域為(0,+∞)的函數(shù)f(x)滿足:
①x>1時,f(x)<0;
②f(${\frac{1}{2}}$)=1;
③對任意的正實數(shù)x,y,都有f(xy)=f(x)+f(y).
(1)求證:f(${\frac{1}{x}}$)=-f(x);
(2)求證:f(x)在定義域內(nèi)為減函數(shù);
(3)求滿足不等式f(log0.5m+3)+f(2log0.5m-1)≥-2的m集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(2)lg25+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=x2-$\frac{2}{x}$的零點位于區(qū)間(  )
A.(1,$\frac{5}{4}$)B.($\frac{5}{4}$,$\frac{3}{2}$)C.($\frac{3}{2}$,$\frac{7}{4}$)D.($\frac{7}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,點M、N分別為線段A1B、AC1的中點.
(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1,求證:MN⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.底面邊長為a的正四面體的體積為$\frac{\sqrt{2}}{12}$a3

查看答案和解析>>

同步練習(xí)冊答案