【題目】在圓錐中,已知高,底面圓的半徑為4,為母線(xiàn)的中點(diǎn);根據(jù)圓錐曲線(xiàn)的定義,下列四個(gè)圖中的截面邊界曲線(xiàn)分別為圓、橢圓、雙曲線(xiàn)及拋物線(xiàn),下面四個(gè)命題,正確的個(gè)數(shù)為( )

①圓的面積為

②橢圓的長(zhǎng)軸為;

③雙曲線(xiàn)兩漸近線(xiàn)的夾角為

④拋物線(xiàn)中焦點(diǎn)到準(zhǔn)線(xiàn)的距離為.

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】B

【解析】

根據(jù)點(diǎn)是母線(xiàn)的中點(diǎn),求出截面圓的半徑即可判斷①;由勾股定理求出橢圓長(zhǎng)軸可判斷②;建立坐標(biāo)系,求出的關(guān)系可判斷③;建立坐標(biāo)系,求出拋物線(xiàn)方程,可判斷④.

點(diǎn)是母線(xiàn)的中點(diǎn), 截面的半徑,因此面積,故①正確;

②由勾股定理可得橢圓的長(zhǎng)軸為,故②正確;

③在與底面、平面的垂直且過(guò)點(diǎn)的平面內(nèi)建立直角坐標(biāo)系,不妨設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為,則,即,把點(diǎn)代入可得,解得,設(shè)雙曲線(xiàn)兩漸近線(xiàn)的夾角為,,因比雙曲線(xiàn)兩漸近線(xiàn)的夾角為,③不正確;

④建立直角坐標(biāo)系,不彷設(shè)拋物線(xiàn)的標(biāo)準(zhǔn)方程為,把點(diǎn)代入可得,解得拋物線(xiàn)中焦點(diǎn)到準(zhǔn)線(xiàn)的距離,④不正確,

故選B .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前n項(xiàng)和為,并且,數(shù)列滿(mǎn)足:,,記數(shù)列的前n項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和為

2)求數(shù)列的通項(xiàng)公式及前n項(xiàng)和為;

3)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】華為手機(jī)作為華為公司三大核心業(yè)務(wù)之一,2018年的銷(xiāo)售量躍居全球第二名,某機(jī)構(gòu)隨機(jī)選取了100名華為手機(jī)的顧客進(jìn)行調(diào)查,并將這人的手機(jī)價(jià)格按照,…分成組,制成如圖所示的頻率分布直方圖,其中.

1)求,的值;

2)求這名顧客手機(jī)價(jià)格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);

3)利用分層抽樣的方式從手機(jī)價(jià)格在的顧客中選取人,并從這人中隨機(jī)抽取人進(jìn)行回訪,求抽取的人手機(jī)價(jià)格在不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.

1)已知等比數(shù)列{an}滿(mǎn)足:,求證:數(shù)列{an}為“M-數(shù)列”;

2)已知數(shù)列{bn}滿(mǎn)足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.

①求數(shù)列{bn}的通項(xiàng)公式;

②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)km時(shí),都有成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn)與圓相切,與橢圓相交于兩點(diǎn),求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)= ,若x1x2R,且x1x2,使得fx1)=fx2),則實(shí)數(shù)a的取值范圍是( 。

A. [2,3]∪(﹣∞,﹣5]B. (﹣∞,2)∪(35

C. [2,3]D. [5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n。如果n=3,再?gòu)倪@批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過(guò)檢驗(yàn);如果n=4,再?gòu)倪@批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過(guò)檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過(guò)檢驗(yàn)。

假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立

(1)求這批產(chǎn)品通過(guò)檢驗(yàn)的概率;

(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案