8.設(shè)a=20.3,b=0.32,c=log${\;}_{\sqrt{2}}$2,將a,b,c按從小到大的順序用不等號(hào)連接為b<a<c.

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性比較大小.

解答 解:∵a=20.3>20=1,
0<b=0.32<0.30=1,
c=log${\;}_{\sqrt{2}}$2=2,
∴b<a<c.
故答案為:b<a<c.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=ax2+2x-3的圖象與x軸只有一個(gè)公共點(diǎn),則實(shí)數(shù)a取值的集合是$\{0,-\frac{1}{3}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程$\left\{\begin{array}{l}{x=\frac{1}{2}+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),0<α<π),拋物線C的直角坐標(biāo)方程為y2=2x.
(1)求拋物線C的準(zhǔn)線的極坐標(biāo)方程;
(2)設(shè)直線l與拋物線C相交于A,B兩點(diǎn),證明|AB|≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若7a=2,b=log73,求72a-3b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.利用秦九韶算法求當(dāng)x=2時(shí),f(x)=5x6+4x5+x4+3x3-81x2+9x-1的值時(shí),進(jìn)行的加法、乘法運(yùn)算的次數(shù)分別為( 。
A.6,11B.6,6C.7,5D.6,13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,-4≤x≤0}\\{-{2}^{x},0<x≤a}\end{array}\right.$的值域是[-8,1],則實(shí)數(shù)a的取值范圍是(0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a3=17,a1a3=16
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log${\;}_{\frac{1}{2}}$an+11,Tn為數(shù)列{bn}前n項(xiàng)的絕對(duì)值之和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)巨著,其卷第五“商功”有如下的問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高一丈.問(wèn)積幾何?”意思為:“今有底面為矩形的屋脊形狀的多面體(如圖)”,下底面寬AD=3丈,長(zhǎng)AB=4丈,上棱EF=2丈,EF∥平面ABCD.EF與平面ABCD的距離為1丈,問(wèn)它的體積是(  )
A.4立方丈B.5立方丈C.6立方丈D.8立方丈

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求下列各式的值
(1)0.001${\;}^{-\frac{1}{3}}$-($\frac{7}{8}$)0+16${\;}^{\frac{3}{4}}$+($\sqrt{2}$•$\root{3}{3}$)6
(2)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{4}lg16}$        
(3)設(shè)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求x+x-1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案