對于函數(shù)
(1)探索函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使函數(shù)為奇函數(shù)?
(1)在上是增函數(shù)(2)時,為奇函數(shù)
解析試題分析:證明:(Ⅰ)解:(1)函數(shù) 的定義域是R, 1分
設(shè) ,則,4分
由 ,,知,得,
所以.
故在上是增函數(shù). 6分
(2)存在。
因?yàn)楹瘮?shù) 的定義域是R,故要使為奇函數(shù),必有 ,解得 . 8分
下面證明當(dāng)時,為奇函數(shù)。
, 11分
為奇函數(shù)。
由上可知,存在實(shí)數(shù),使為奇函數(shù)。 12分
考點(diǎn):函數(shù)的單調(diào)性和奇偶性
點(diǎn)評:主要是考查了函數(shù)的性質(zhì)的綜合運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處取得極值 .
(I)求實(shí) 數(shù)a和b. (Ⅱ)求f(x)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax3+bx2-x(x∈R,a、b是常數(shù),a≠0),且當(dāng)x=1和x=2時,函數(shù)f(x)取得極值.(I)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=有兩個不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知奇函數(shù)在時的圖象是如圖所示的拋物線的一部分.
(1)請補(bǔ)全函數(shù)的圖象;
(2)寫出函數(shù)的表達(dá)式;
(3)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像如右所示。
(1)求證:在區(qū)間為增函數(shù);
(2)試討論在區(qū)間上的最小值.(要求把結(jié)果寫成分段函數(shù)的形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()是定義在上的奇函數(shù),且時,函數(shù)取極值1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)令,若(),不等式恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1) 當(dāng)時, 求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時,求函數(shù)在區(qū)間上的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I) 解關(guān)于的不等式
(II)若函數(shù)的圖象恒在函數(shù)的上方,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若關(guān)于的方程有3個不同實(shí)根,求實(shí)數(shù)的取值范圍;
(3)已知當(dāng)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com