如圖,過(guò)拋物線(xiàn)C:x2=4y的對(duì)稱(chēng)軸上一點(diǎn)P(0,m)(m>0)作直線(xiàn)l與拋物線(xiàn)交于A(yíng)(x1,y1),B(x2,y2)兩點(diǎn),點(diǎn)Q是P關(guān)于原點(diǎn)的對(duì)稱(chēng).

(1)求證:x1x2=-4m;

(2)設(shè)P分有向線(xiàn)段所成的比為λ,若,求證:λ=μ.

答案:
解析:

  證明:(1)設(shè)方程為:,由,所以

  (2)由分有向線(xiàn)段所成的比為,由

  從而,把代入上式得,則,所以,而顯然,

  所以


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,過(guò)拋物線(xiàn)x2=4y的對(duì)稱(chēng)軸上任一點(diǎn)P(0,m)(m>0)作直線(xiàn)與拋物線(xiàn)交于A(yíng),B兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn).
(I)設(shè)點(diǎn)P分有向線(xiàn)段
AB
所成的比為λ,證明:
QP
⊥(
QA
QB
)

(Ⅱ)設(shè)直線(xiàn)AB的方程是x-2y+12=0,過(guò)A,B兩點(diǎn)的圓C與拋物線(xiàn)在點(diǎn)A處有共同的切線(xiàn),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線(xiàn)C:y=x2的焦點(diǎn)為F,動(dòng)點(diǎn)P在直線(xiàn)l:x-y-2=0上運(yùn)動(dòng),過(guò)P作拋物線(xiàn)C的兩條切線(xiàn)PA、PB,且與拋物線(xiàn)C分別相切于A(yíng)、B兩點(diǎn).
(1)求△APB的重心G的軌跡方程.
(2)證明∠PFA=∠PFB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)拋物線(xiàn)x2=4y的對(duì)稱(chēng)軸上任一點(diǎn)P(0,m)(m>0)作直線(xiàn)與拋物線(xiàn)交于A(yíng)(x1,y1),B(x2,y2)兩點(diǎn).
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2
;
(II)在(I)條件下,若點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn),證明:
QP
⊥(
QA
QB
)
;
(III)設(shè)直線(xiàn)AB的方程是x-2y+12=0,過(guò)A,B兩點(diǎn)的圓C與拋物線(xiàn)在點(diǎn)A處有共同的切線(xiàn),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)任作一條直線(xiàn)交拋物線(xiàn)于A(yíng),D兩點(diǎn),若存在一定圓與直線(xiàn)交于B,C兩點(diǎn),使|AB|•|CD|=1,則定圓方程為
(x-1)2+y2=1
(x-1)2+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)拋物線(xiàn)y2=4x焦點(diǎn)的直線(xiàn)依次交拋物線(xiàn)與圓(x-1)2+y2=1于A(yíng),B,C,D,則
AB
CD
=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案