【題目】矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x﹣3y﹣6=0,點T(﹣1,1)在AD邊所在直線上. (Ⅰ)求AD邊所在直線的方程;
(Ⅱ)求矩形ABCD外接圓的方程.

【答案】解:(I)∵AB邊所在直線的方程為x﹣3y﹣6=0,且AD與AB垂直,

∴直線AD的斜率為﹣3.

又∵點T(﹣1,1)在直線AD上,

∴AD邊所在直線的方程為y﹣1=﹣3(x+1),

即3x+y+2=0.

(II)由 ,解得點A的坐標為(0,﹣2),

∵矩形ABCD兩條對角線的交點為M(2,0).

∴M為矩形ABCD外接圓的圓心,

又|AM|2=(2﹣0)2+(0+2)2=8,

從而矩形ABCD外接圓的方程為 (x﹣2)2+y2=8.


【解析】(I)由已知中AB邊所在直線的方程為x﹣3y﹣6=0,且AD與AB垂直,我們可以求出直線AD的斜率,結合點T(﹣1,1)在直線AD上,可得到AD邊所在直線的點斜式方程,進而再化為一般式方程.(II)根據(jù)矩形的性質(zhì)可得矩形ABCD外接圓圓心即為兩條對角線交點M(2,0),根據(jù)(I)中直線AB,AD的直線方程求出A點坐標,進而根據(jù)AM長即為圓的半徑,得到矩形ABCD外接圓的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+1)x+b.
(1)若f(x)<0的解集為(﹣1,3),求a,b的值;
(2)當a=1時,若對任意x∈R,f(x)≥0恒成立,求實數(shù)b的取值范圍;
(3)當b=a時,解關于x的不等式f(x)<0(結果用a表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知圓C的方程:x2+y2﹣2x﹣4y+4=0,點P是直線l:x﹣2y﹣2=0上的任意點,過P作圓的兩條切線PA,PB,切點為A、B,當∠APB取最大值時.
(Ⅰ)求點P的坐標及過點P的切線方程;
(Ⅱ)在△APB的外接圓上是否存在這樣的點Q,使|OQ|= (O為坐標原點),如果存在,求出Q點的坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足: ①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當a變化時,求出n﹣m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心為O,點E是側(cè)棱BB1上的一個動點.有下列判斷: ①直線AC與直線C1E是異面直線;②A1E一定不垂直于AC1;③三棱錐E﹣AA1O的體積為定值;④AE+EC1的最小值為2
其中正確的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中, 平面PCD,平面PAD平面ABCD,CD⊥AD,△APD為等腰直角三角形,
(1)證明:平面PAB⊥平面PCD;
(2)若三棱錐B﹣PAD的體積為 ,求平面PAD與平面PBC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知銳角三角形的兩個內(nèi)角A,B滿足 ,則有(
A.sin2A﹣cosB=0
B.sin2A+cosB=0
C.sin2A+sinB=0
D.sin2A﹣sinB=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設不等式|x﹣2|<a(a∈N*)的解集為A,且
(Ⅰ)求a的值
(Ⅱ)求函數(shù)f(x)=|x+a|+|x﹣2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的三個頂點分別為A(0,4)、B(-2,6)、C(-8,0).
(1)分別求邊AC和AB所在直線的方程;
(2)求AC邊上的中線BD所在直線的方程;
(3)求AC邊的中垂線所在直線的方程;
(4)求AC邊上的高所在直線的方程;
(5)求經(jīng)過兩邊AB和AC的中點的直線方程.

查看答案和解析>>

同步練習冊答案