已知復(fù)數(shù)z0=3+2i,復(fù)數(shù)z滿足z-2iz0=5z,則復(fù)數(shù)z=
 
分析:把復(fù)數(shù)z0=3+2i代入復(fù)數(shù)方程,表示出z,然后再化簡求解即可.
解答:解:因為z0=3+2i,
所以z-2iz0=5z,化為z-2i(3+2i)=5z,
解得:z=1-
3
2
i

故答案為:1-
3
2
i
點評:本題考查復(fù)數(shù)代數(shù)形式的混合運算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)已知復(fù)數(shù)z1滿足(1+i)z1=3+i,復(fù)數(shù)z0滿足z0z1+
.
z0
=4

(1)求復(fù)數(shù)z0;
(2)設(shè)z0是關(guān)于x的實系數(shù)方程x2-px+q=0的一個根,求p、q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2000•上海)已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點P的坐標,(x'、y')作為點Q的坐標,上述關(guān)系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標為(
3
,2)
,試求點P的坐標;
(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=
.
z0
.
z
,|w|=2|z|.
(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式:
(Ⅱ)將(x、y)用為點P的坐標,(x'、y')作為點Q的坐標,上述關(guān)系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標為(
3
,2)
,試求點P的坐標;
(Ⅲ)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:閘北區(qū)一模 題型:解答題

已知復(fù)數(shù)z1滿足(1+i)z1=3+i,復(fù)數(shù)z0滿足z0z1+
.
z0
=4

(1)求復(fù)數(shù)z0;
(2)設(shè)z0是關(guān)于x的實系數(shù)方程x2-px+q=0的一個根,求p、q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22.已知復(fù)數(shù)z0=l-mi(m>0),z=x+yi和w=x′+y′i.其中xy,x′,y′均為實數(shù).i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=·,.

(1)試求m的值,并分別寫出x′和y′用x、y表示的關(guān)系式;

(2)將(x,y)作為點P的坐標,(x′,y′)作為點Q的坐標,上述關(guān)系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.

當(dāng)點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程.

(3)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在c 該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.

查看答案和解析>>

同步練習(xí)冊答案