【題目】已知函數(shù)f(x)=(sinx+cosx)2-cos2x.

(I)求f(x)的最小正周期;

(II)求證:當x∈[0, ]時,f(x)≥0.

【答案】I;II證明見解析.

【解析】試題分析:I根據(jù)三角恒等變換的公式,化簡函數(shù),即求解函數(shù)的最小正周期;

II)由(I)可知的解析式,由題意求得,得,即可求得函數(shù)的值域,從而做出證明.

試題解析:

I)因為fx=sin2x+cos2x+sin2x-cos2x

=1+sin2x-cos2x=sin2x-+1.

所以函數(shù)fx)的最小正周期為.

II)由(I)可知,fx=sin2x-+1.

x [0 ]時,2x- [-, ]sin2x- [-1],

sin2x-+1[0 +l].

2x-=-,即x=0時,fx)取了最小值0.所以當x[0 ]時,fx≥0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學高一女生共有450人,為了了解高一女生的身高情況,隨機抽取部分高一女生測量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:

組別

頻數(shù)

頻率

145.5149.5

8

0.16

149.5153.5

6

0.12

153.5157.5

14

0.28

157.5161.5

10

0.20

161.5165.5

8

0.16

165.5169.5



合計



1)求出表中字母所對應的數(shù)值;

2)在給出的直角坐標系中畫出頻率分布直方圖;

3)估計該校高一女生身高在149.5165.5范圍內(nèi)有多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)和數(shù)列滿足下列條件:,當時,,其中均為非零常數(shù).

1)若是等差數(shù)列,求實數(shù)的值;

2)令),若,求數(shù)列的通項公式;

3)令),若,數(shù)列滿足,若數(shù)列有最大值,最小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)解關于的不等式

(2)若不等式的解集為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;

(II)若函數(shù)在區(qū)間內(nèi)無零點,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥底面ABC.已知D是BC的中點,AB=AA1=2.

(I)求證:平面AB1D⊥平面BB1C1C;

(II)求證:A1C∥平面AB1D;

(III)求三棱錐A1-AB1D的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在高中學習過程中,同學們經(jīng)常這樣說“如果物理成績好,那么學習數(shù)學就沒什么問題”某班針對“高中生物理對數(shù)學學習的影響”進行研究,得到了學生的物理成績與數(shù)學成績具有線性相關關系的結(jié)論,現(xiàn)從該班隨機抽取5名學生在一次考試中的物理和數(shù)學成績,如表:

編號成績

1

2

3

4

5

物理(x)

90

85

74

68

63

數(shù)學(y)

130

125

110

95

90

(1)求數(shù)學y成績關于物理成績x的線性回歸方程(精確到0.1),若某位學生的物理成績?yōu)?0分時,預測他的數(shù)學成績.

(2)要從抽取的這五位學生中隨機選出三位參加一項知識競賽,以x表示選中的學生的數(shù)學成績高于100分的人數(shù),求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·山東卷)已知數(shù)列{an}的前n項和Sn3n28n{bn}是等差數(shù)列,且anbnbn1.

(1)求數(shù)列{bn}的通項公式;

(2)cn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體中,分別是線段的中點,,,直線與平面所成的角等于

(Ⅰ)證明:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案