在某校高三學(xué)生的數(shù)學(xué)校本課程選課過程中,規(guī)定每位同學(xué)只能選一個(gè)科目.已知某班第一小組與第二小組各有六位同學(xué)選擇科目甲或科目乙,情況如下表:

 
科目甲
科目乙
總計(jì)
第一小組
1
5
6
第二小組
2
4
6
總計(jì)
3
9
12
現(xiàn)從第一小組、第二小組中各任選2人分析選課情況.
(1)求選出的4人均選科目乙的概率;
(2)設(shè)為選出的4個(gè)人中選科目甲的人數(shù),求的分布列和數(shù)學(xué)期望.

(1);(2)分布列詳見解析,.

解析試題分析:(1)選出的4人均選科目乙相當(dāng)于事件 =“從第一小組選出的2人選科目乙”和事件 =“從第二小組選出的2人選科目乙”同時(shí)發(fā)生,由事件獨(dú)立,根據(jù)獨(dú)立事件同時(shí)發(fā)生的概率公式
求解;(2)依題意得,分別求其發(fā)生的概率,再寫出分布列,進(jìn)而求的數(shù)學(xué)期望 .
試題解析:(1)設(shè)“從第一小組選出的2人選科目乙”為事件, “從第二小組選出的2人選科目乙”為事件.由于事 件、相互獨(dú)立,
,    ,所以選出的4人均選科目乙的概率為

(2)設(shè)可能的取值為0,1,2,3.得
,  ,,

的分布列為



 







的數(shù)學(xué)期望
考點(diǎn):1、組合;2、獨(dú)立事件同時(shí)發(fā)生的概率公式;3、分布列和期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)民生所望,相關(guān)部門對(duì)所屬服務(wù)單位進(jìn)行整治行核查,規(guī)定:從甲類3個(gè)指標(biāo)項(xiàng)中隨機(jī)抽取2項(xiàng),從乙類2個(gè)指標(biāo)項(xiàng)中隨機(jī)抽取1項(xiàng).在所抽查的3個(gè)指標(biāo)項(xiàng)中,3項(xiàng)都優(yōu)秀的獎(jiǎng)勵(lì)10萬元;只有甲類2項(xiàng)優(yōu)秀的獎(jiǎng)勵(lì)6萬元;甲類只有1項(xiàng)優(yōu)秀、乙類1項(xiàng)優(yōu)秀的提出警告,有2項(xiàng)或2項(xiàng)以上不優(yōu)秀的停業(yè)運(yùn)營(yíng)并罰款8萬元.已知某家服務(wù)單位甲類3項(xiàng)指標(biāo)項(xiàng)中有2項(xiàng)優(yōu)秀,乙類2項(xiàng)指標(biāo)項(xiàng)中有1項(xiàng)優(yōu)秀.
求:(1)這家單位受到獎(jiǎng)勵(lì)的概率;
(2)這家單位這次整治性核查中所獲金額的均值(獎(jiǎng)勵(lì)為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為貫徹“激情工作,快樂生物”的理念,某單位在工作之余舉行趣味知識(shí)有獎(jiǎng)競(jìng)賽,比賽分初賽和決賽兩部分,為了增加節(jié)目的趣味性,初賽采用選手選—題答—題的方式進(jìn)行,每位選手最多有5次選答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰,已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點(diǎn),再?gòu)腁1,A2,A3,A4,A5,A6(如圖)這6個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)分別求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)寫出數(shù)量積X的所有可能取值,并求X分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

同時(shí)拋擲兩枚大小形狀都相同、質(zhì)地均勻的骰子,求:
(1)一共有多少種不同的結(jié)果;
(2)點(diǎn)數(shù)之和4的概率;
(3)至少有一個(gè)點(diǎn)數(shù)為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校為了使運(yùn)動(dòng)員順利參加運(yùn)動(dòng)會(huì),招募了8名男志愿者和12名女志愿者,這20名志愿者的身高如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個(gè)子”,身高在180cm以下(不包括180cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才能擔(dān)任“禮儀小姐”.


 

 
 
8
16
5
8
9
 
 
8
7
6
17
2
3
5
5
6
7
4
2
18
0
1
2
 
 
 
 
1
19
0
 
 
 
 
(Ⅰ)用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,如果從這5人中隨機(jī)選2人,那么至少有1人是“高個(gè)子”的概率是多少?
(Ⅱ)若從所有“高個(gè)子”中隨機(jī)選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

省少年籃球隊(duì)要從甲、乙兩所體校選拔隊(duì)員,F(xiàn)將這兩所體校共20名學(xué)生的身高繪制成如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個(gè)子”,身高在180cm以下(不包括180cm)定義為“非高個(gè)子”.

(1)用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,如果從這5人中隨
機(jī)選2人,那么至少有一人是“高個(gè)子”的概率是多少?
(2)從兩隊(duì)的“高個(gè)子”中各隨機(jī)抽取1人,求恰有1人身高達(dá)到190cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了了解某班的男女生學(xué)習(xí)體育的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們期末體育成績(jī)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù)。

(Ⅰ)若該班男女生平均分?jǐn)?shù)相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該10名男生中隨機(jī)抽取2名,優(yōu)秀的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.

(1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)Y的分布列和數(shù)學(xué)期望.(注:方差s2 [(x1)2+(x2)2+…+(xn)2],其中x1,x2,…,xn的平均數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案