【題目】在正方體ABCD—A1B1C1D1中,若E為A1C1中點,則直線CE垂直于( )
A. AC B. BD C. A1D D. A1A
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2-2x-3,求f(3),f(-5),f(5),并計算f(3)+f(-5)+f(5)的值.設(shè)計出解決該問題的一個算法,并畫出程框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個班進行教改實驗.為了了解教學(xué)效果,期末考試后,陳老師對甲、乙兩個班級的學(xué)生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學(xué)方式有關(guān)?
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過點的直線與分別交于(均異于點),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為D,若對任意x1,x2∈D,當(dāng)x1<x2時,都有
f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;②;③f(1-x)=2﹣f(x).則( 。
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.
注: 年份代碼1-7分別對應(yīng)年份2010-2016.
(1)由折線圖看出,可用線性回歸模型擬合和的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測年該企業(yè)污水凈化量;
(3)請用數(shù)據(jù)說明回歸方程預(yù)報的效果.
附注: 參考數(shù)據(jù):;
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最;
二乘法估汁公式分別為;
反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+3x2+9x+1.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)在點(﹣2,f(﹣2))處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),在下列條件下,求實數(shù)的取值范圍.
(1)零點均大于;
(2)一個零點大于,一個零點小于;
(3)一個零點在內(nèi),另一個零點在內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點,對任意實數(shù)滿足,且函數(shù)的最小值為2.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中,求函數(shù)在區(qū)間上的最小值;
(3)若在區(qū)間上,函數(shù)的圖象恒在函數(shù)的圖象上方,試確定實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com