已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)滿足:
①對任意的,,當(dāng)時,有成立;
②對恒成立.求實數(shù)的取值范圍.
(1)在上單調(diào)遞減,在上單調(diào)遞增;(2).
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值等性質(zhì)等基礎(chǔ)知識,同時考查分類討論等綜合解題能力.第一問,對求導(dǎo),求導(dǎo)后還無法直接判斷的正負(fù),所以再次求導(dǎo),得到恒大于0,則在上單調(diào)遞增,而,所以當(dāng)時,,當(dāng)時,,故在上單調(diào)遞減,在上單調(diào)遞增;第二問,<1>由第一問函數(shù)的單調(diào)性可知,必異號,不妨設(shè),先證明一個結(jié)論:當(dāng)時,對任意的有成立,當(dāng)時,對任意的有成立,構(gòu)造函數(shù),利用函數(shù)研究函數(shù)的單調(diào)性和最值證明結(jié)論,最后得出結(jié)論,當(dāng)時,當(dāng)且僅當(dāng)時,有成立;<2>由題意分析只需即可,通過上一步的證明,得到,而在和中取得,作差比較和的大小,從而得到,代入到上式即可.
試題解析:(1),
令,則,
從而在上單調(diào)遞增,即在上單調(diào)遞增,又,
所以當(dāng)時,,當(dāng)時,,
故在上單調(diào)遞減,在上單調(diào)遞增.
(2)由(1)可知,當(dāng),時,必異號,不妨設(shè),
我們先證明一個結(jié)論:當(dāng)時,對任意的有成立;
當(dāng)時,對任意的有成立.
事實上,,
構(gòu)造函數(shù),,
,(當(dāng)且僅當(dāng)時等號成立),又,
當(dāng)時,,所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)當(dāng)時,求曲線在處的切線方程;
(Ⅱ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù),若對于,,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0),設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于兩點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線互相平行?若存在,求出點(diǎn)R的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實
根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x3+ax2-4(a∈R).
(1)若函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為,求f(x)在[-1,1]上的最小值;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=10000+20x,每日的銷售額R(單位:元)與日產(chǎn)量x滿足函數(shù)關(guān)系式R=
已知每日的利潤y=R-C,且當(dāng)x=30時,y=-100.
(1)求a的值.
(2)求當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達(dá)到最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com