【題目】在直角坐標系xOy中,動點P與定點的距離和它到定直線的距離之比是,設動點P的軌跡為E.

(1)求動點P的軌跡E的方程;

(2)設過F的直線交軌跡E的弦為AB,過原點的直線交軌跡E的弦為CD,若,求證:為定值.

【答案】(1)

(2)證明見解析

【解析】

1)設點,根據(jù)動點P與定點的距離和它到定直線的距離之比是,列出等式,再化簡即可得出答案.

2)設出直線AB與直線CD,聯(lián)立直線與橢圓,即可得出、的值,即可求出.

解:(1)設點,由題意得,將兩邊平方,并簡化得,

故軌跡的方程是

2)證明:①當直線AB的斜率不存在時,易求,

②當直線AB的斜率存在時,

設直線AB的斜率為k,依題意

則直線AB的方程為,直線CD的方程為

,,

,,

整理得,則

綜合①②知:為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某社會機構為了調查對手機游戲的興趣與年齡的關系,通過問卷調查,整理數(shù)據(jù)得如下列聯(lián)表:

1)根據(jù)列聯(lián)表,能否有99.9%的把握認為對手機游戲的興趣程度與年齡有關?

2)若已經從40歲以下的被調查者中用分層抽樣的方式抽取了5名,現(xiàn)從這5名被調查者中隨機選取3名,求這3名被調查者中恰有1名對手機游戲無興趣的概率.

附:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;

(2)設點的極坐標為,點在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調性;

(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內恒成立(e=2.718…為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】九章算術是我國古代著名數(shù)學經典其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示陰影部分為鑲嵌在墻體內的部分已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈寸,,)

A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題中:①在回歸分析中,可用相關系數(shù)r的值判斷模型的擬合效果,|r|越大,模擬的擬合效果越好;②在一組樣本數(shù)據(jù)不全相等)的散點圖中,若所有樣本點都在直線上,則這組樣本數(shù)據(jù)的線性相關系數(shù)為;③對分類變量xy的隨機變量來說,越小,判斷xy有關系的把握程度越大.其中真命題的個數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午這一時間段內通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段記作區(qū)間記作,記作記作,例如:10點04分,記作時刻64.

1)估計這600輛車在時間段內通過該收費點的時刻的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表;

2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設抽到的4輛車中,之間通過的車輛數(shù)為,求的分布列與數(shù)學期望;

3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻服從正態(tài)分布,其中可用這600輛車在之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表,已知大年初五全天共有1000輛車通過該收費點,估計在之間通過的車輛數(shù)結果保留到整數(shù)

參考數(shù)據(jù):若,

;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是各項均為正數(shù)的等比數(shù)列,是等差數(shù)列,且.

I)求的通項公式;

II)設數(shù)列滿足,求

III)對任意正整數(shù),不等式成立,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,BC所對的邊分別為a,b,c,函數(shù)fx)=2cosxsinxA+sinAxR)在x處取得最大值.

1)當時,求函數(shù)fx)的值域;

2)若sinB+sinC,求△ABC的面積.

查看答案和解析>>

同步練習冊答案