若直線l過點P(1,1)與雙曲線x2-
y2
4
=1只有一個公共點,則這樣的直線有(  )
A、4條B、3條C、2條D、1條
考點:直線與圓錐曲線的關系
專題:圓錐曲線的定義、性質與方程
分析:雙曲線x2-
y2
4
=1的漸近線方程為:y=±2x,結合雙曲線的性質與圖形可得過點(1,1)與雙曲線公有一個公共點的直線的條數(shù).
解答: 解:由題意可得:雙曲線x2-
y2
4
=1的漸近線方程為:y=±2x,
①直線x=1與雙曲線只有一個公共點;
②過點P (1,1)平行于漸近線y=±2x時,直線L與雙曲線只有一個公共點,方程為y-1=±2(x-1),即2x-y-1=0或2x+y-3=0
故直線l過點P(1,1)與雙曲線x2-
y2
4
=1只有一個公共點,則這樣的直線有3條.
故選:B.
點評:本題以雙曲線為載體,主要考查了直線與圓錐曲線的綜合問題.突出考查了雙曲線的幾何性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

cos960°=( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在矩形ABCD中,|
AB
|=
3
,|
BC
|=1,則|
BA
-
BC
|=(  )
A、2
B、3
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是水平放置的△ABC的直觀圖,A′B′∥y′軸,A′B′=A′C′,則△ABC是( 。
A、等邊三角形
B、等腰三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>0,橢圓C1的方程為
x2
a2
+
y2
b2
=1,雙曲線C2的方程為
x2
a2
-
y2
b2
=1,C1與C2的離心率之積為
15
4
,則C2的漸近線方程為( 。
A、x±2y=0
B、2x±y=0
C、x±4y=0
D、4x±y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,且Sn=2an-1,設bn=2(log2an+1),n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn•an}的前n項和Tn
(3)證明:對于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長為1,在正方體內(nèi)隨機取點M,求使四棱錐M-ABCD的體積小于
1
6
的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市出租車收費標準是:3km起價10元(乘一次的最少車費);行駛3km后,每千米車費1.6元,行駛10km后,每千米車費2.4元
(1)寫出車費y與里程x的函數(shù)關系式
(2)一顧客行程30km,為了省錢,他設計了三種乘車方案:①乘一輛出租車到達目的地;②分兩段乘車,乘一輛車行15km,換另一輛車再行15km;③分三段乘車,每行10km換一次車,問哪種方案最省錢?

查看答案和解析>>

同步練習冊答案