精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)在(﹣1,+∞)上單調,且函數y=f(x﹣2)的圖象關于x=1對稱,若數列{an}是公差不為0的等差數列,且f(a50)=f(a51),則{an}的前100項的和為(
A.﹣200
B.﹣100
C.0
D.﹣50

【答案】B
【解析】解:函數f(x)在(﹣1,+∞)上單調,且函數y=f(x﹣2)的圖象關于x=1對稱, 可得y=f(x)的圖象關于x=﹣1對稱,
由數列{an}是公差不為0的等差數列,且f(a50)=f(a51),
可得a50+a51=﹣2,又{an}是等差數列,
所以a1+a100=a50+a51=﹣2,
則{an}的前100項的和為 =﹣100
故選:B.
【考點精析】利用函數單調性的性質和等差數列的前n項和公式對題目進行判斷即可得到答案,需要熟知函數的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集;前n項和公式:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某服務電話,打進的電話響第1聲時被接的概率是0.1;響第2聲時被接的概率是0.2;響第3聲時被接的概率是0.3;響第4聲時被接的概率是0.35.

(1)打進的電話在響5聲之前被接的概率是多少?

(2)打進的電話響4聲而不被接的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班從6名干部中(其中男生4人,女生2人)選3人參加學校的義務勞動.
(1)設所選3人中女生人數為ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一支車隊有輛車,某天依次出發(fā)執(zhí)行運輸任務。第一輛車于下午時出發(fā),第二輛車于下午分出發(fā),第三輛車于下午分出發(fā),以此類推。假設所有的司機都連續(xù)開車,并都在下午時停下來休息.

到下午時,最后一輛車行駛了多長時間?

如果每輛車的行駛速度都是,這個車隊當天一共行駛了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)已知的兩個零點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,,記.

1)求曲線處的切線方程;

2)求函數的單調區(qū)間;

3)當時,若函數沒有零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數)在處取得極值.

(1)求的單調區(qū)間;

(2)討論的零點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等極如下表:

質量指標值m

m<185

185≤m<205

m≥205

等級

三等品

二等品

一等品

從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據以上抽樣調查數據,能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品90%”的規(guī)定?
(Ⅱ)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值X近似滿足X~N(218,140}),則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

同步練習冊答案