設(shè)A、B是雙曲線上的兩點(diǎn),點(diǎn)N(1,2)是線段AB的中點(diǎn).
(I)求直線AB的方程
(II)如果線段AB的垂直平分線與雙曲線相交于C、D兩點(diǎn),那么A、B、C、D四點(diǎn)是否共圓?為什么?
【答案】分析:(Ⅰ)依題意,記A(x1,y1),B(x2,y2),可設(shè)直線AB的方程為y=k(x-1)+2,代入雙曲線方程,化簡(jiǎn)可得
(2-k2)x2-2k(2-k)x-(2-k)2-2=0①,由根與系數(shù)的關(guān)系,可得,而已知N(1,2)是AB的中點(diǎn)得,聯(lián)立可得k的值,即可得直線的方程;
(Ⅱ)由(Ⅰ)可得k的值,計(jì)算可得A、B的坐標(biāo),由CD垂直平分AB,可得直線CD的方程,代入雙曲線方程,整理得x2+6x-11=0;記C(x3,y3),D(x4,y4),以及CD的中點(diǎn)為M(x,y),則x3,x4是方程②的兩個(gè)根;計(jì)算可得,|MA|=|MB|=|MC|=|MD|,即可得么A、B、C、D四點(diǎn)共圓.
解答:解:(I)依題意,記A(x1,y1),B(x2,y2),
可設(shè)直線AB的方程為y=k(x-1)+2,
代入x2-=1,整理得(2-k2)x2-2k(2-k)x-(2-k)2-2=0①
x1,x2則是方程①的兩個(gè)不同的根,
所以2-k2≠0,且x1+x2=
由N(1,2)是AB的中點(diǎn)得
∴k(2-k)=2-k2,
解得k=1,
所以直線AB的方程為y=x+1

(II)將k=1代入方程①得x2-2x-3=0
解出x1=-1,x2=3
由y=x+1得y1=0,y2=4.
即A、B的坐標(biāo)分別為(-1,0)和(3,4).
由CD垂直平分AB,
得直線CD的方程為y=-(x-1)+2,
即y=3-x.
代入雙曲線方程,整理得x2+6x-11=0.②
記C(x3,y3),D(x4,y4),以及CD的中點(diǎn)為M(x,y),
則x3,x4是方程②的兩個(gè)根.所以x3+x4=-6,x3x4=-11.
從而x=
y=3-x=6|CD|=
=
∴|MC|=|MD|=
又|MA|=|MB|=
即A、B、C、D四點(diǎn)到點(diǎn)M的距離相等,所以A、B、C、D四點(diǎn)共圓.
點(diǎn)評(píng):本題考查直線與雙曲線的綜合運(yùn)用,注意解析幾何證明四點(diǎn)共圓問題時(shí),一般轉(zhuǎn)化為四點(diǎn)或多點(diǎn)到定點(diǎn)的距離相等,即點(diǎn)與點(diǎn)之間的距離來求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:044

設(shè)AB是雙曲線上的兩點(diǎn),點(diǎn)N(12)是線段AB的中點(diǎn).

(1)求直線AB的方程;

(2)如果線段AB的垂直平分線與雙曲線相交于CD兩點(diǎn),那么A、BC、D四點(diǎn)是否共圓,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省南通市通州高級(jí)中學(xué)高考考前指導(dǎo)之怎樣解解答題(解析版) 題型:解答題

設(shè)A、B是雙曲線上的兩點(diǎn),點(diǎn)N(1,2)是線段AB的中點(diǎn).
(I)求直線AB的方程
(II)如果線段AB的垂直平分線與雙曲線相交于C、D兩點(diǎn),那么A、B、C、D四點(diǎn)是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年江蘇省高考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)A、B是雙曲線上的兩點(diǎn),點(diǎn)N(1,2)是線段AB的中點(diǎn).
(I)求直線AB的方程
(II)如果線段AB的垂直平分線與雙曲線相交于C、D兩點(diǎn),那么A、B、C、D四點(diǎn)是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省南通市教研室高考數(shù)學(xué)全真模擬試卷(一)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)A、B是雙曲線上的兩點(diǎn),M(1,2)是線段AB的中點(diǎn),線段AB的垂直平分線與雙曲線相交于C、D兩點(diǎn).
(1)求直線AB與CD的方程;
(2)判斷A、B、C、D四點(diǎn)是否共圓?若共圓,請(qǐng)求出圓的方程;若不共圓,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案